pyAKI


NamepyAKI JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/AI2MS/pyAKI
SummarypyAKI allows calculation of Acute Kidney Injury from urine output and creatinine based on KDIGO criteria.
upload_time2024-04-18 09:33:21
maintainerNone
docs_urlNone
author'Jan Ernsting, Christian Porschen, Paul Brauckmann'
requires_pythonNone
licenseNone
keywords aki
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Coverage Status](https://coveralls.io/repos/github/aidh-ms/pyAKI/badge.svg?branch=main)](https://coveralls.io/github/aidh-ms/pyAKI?branch=main)

# pyAKI

Python package to detect AKI within time series data.

The goal of this package is to establish well tested, comprehensive functions for the detection of Acute Kidney Injury (AKI) in time series data, according to the Kidney Disease Improving Global Outcomes (KDIGO) Criteria, established in 2012 [^kdigo].
![](img/kdigo_criteria.png)

## Installation

```shell
pip install git+https://github.com/aidh-ms/pyAKI
```

## Usage

```python
import pandas as pd

from pyAKI.probes import Dataset, DatasetType
from pyAKI.kdigo import Analyser

data = [
    Dataset(DatasetType.URINEOUTPUT, pd.DataFrame()),
    Dataset(DatasetType.CREATININE, pd.DataFrame()),
    Dataset(DatasetType.DEMOGRAPHICS, pd.DataFrame()),
    Dataset(DatasetType.RRT, pd.DataFrame()),
]

analyser = Analyser(data)
results: pd.Dataframe =  analyser.process_stays()
```

### Tests

```shell
pytest --cov=. test/
```

### Acknowledgement

We encourage all users to use pyAKI in their scientific work. Doing so, please use the following citation:
```
@misc{porschen2024pyaki,
    title={pyAKI - An Open Source Solution to Automated KDIGO classification},
    author={Christian Porschen and Jan Ernsting and Paul Brauckmann and Raphael Weiss and Till Würdemann and Hendrik Booke and Wida Amini and Ludwig Maidowski and Benjamin Risse and Tim Hahn and Thilo von Groote},
    year={2024},
    eprint={2401.12930},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```
Our paper can be found on [arxiv](https://arxiv.org/abs/2401.12930).
[^kdigo]: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2012; 2: 1–138.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AI2MS/pyAKI",
    "name": "pyAKI",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "AKI",
    "author": "'Jan Ernsting, Christian Porschen, Paul Brauckmann'",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/f1/85/722d0f8a05bc51dd0667e01dc62024e75cde7ac83d0a7bfb02394f2fbe38/pyaki-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Coverage Status](https://coveralls.io/repos/github/aidh-ms/pyAKI/badge.svg?branch=main)](https://coveralls.io/github/aidh-ms/pyAKI?branch=main)\n\n# pyAKI\n\nPython package to detect AKI within time series data.\n\nThe goal of this package is to establish well tested, comprehensive functions for the detection of Acute Kidney Injury (AKI) in time series data, according to the Kidney Disease Improving Global Outcomes (KDIGO) Criteria, established in 2012 [^kdigo].\n![](img/kdigo_criteria.png)\n\n## Installation\n\n```shell\npip install git+https://github.com/aidh-ms/pyAKI\n```\n\n## Usage\n\n```python\nimport pandas as pd\n\nfrom pyAKI.probes import Dataset, DatasetType\nfrom pyAKI.kdigo import Analyser\n\ndata = [\n    Dataset(DatasetType.URINEOUTPUT, pd.DataFrame()),\n    Dataset(DatasetType.CREATININE, pd.DataFrame()),\n    Dataset(DatasetType.DEMOGRAPHICS, pd.DataFrame()),\n    Dataset(DatasetType.RRT, pd.DataFrame()),\n]\n\nanalyser = Analyser(data)\nresults: pd.Dataframe =  analyser.process_stays()\n```\n\n### Tests\n\n```shell\npytest --cov=. test/\n```\n\n### Acknowledgement\n\nWe encourage all users to use pyAKI in their scientific work. Doing so, please use the following citation:\n```\n@misc{porschen2024pyaki,\n    title={pyAKI - An Open Source Solution to Automated KDIGO classification},\n    author={Christian Porschen and Jan Ernsting and Paul Brauckmann and Raphael Weiss and Till W\u00fcrdemann and Hendrik Booke and Wida Amini and Ludwig Maidowski and Benjamin Risse and Tim Hahn and Thilo von Groote},\n    year={2024},\n    eprint={2401.12930},\n    archivePrefix={arXiv},\n    primaryClass={cs.LG}\n}\n```\nOur paper can be found on [arxiv](https://arxiv.org/abs/2401.12930).\n[^kdigo]: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2012; 2: 1\u2013138.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "pyAKI allows calculation of Acute Kidney Injury from urine output and creatinine based on KDIGO criteria.",
    "version": "0.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/AI2MS/pyAKI/issues",
        "Documentation": "https://github.com/AI2MS/pyAKI",
        "Download": "https://github.com/AI2MS/pyAKI",
        "Homepage": "https://github.com/AI2MS/pyAKI",
        "Source Code": "https://github.com/AI2MS/pyAKI"
    },
    "split_keywords": [
        "aki"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1670af67dabf6efdcedc0b940846569e944d23358635ab305076949ee7e235f2",
                "md5": "be76bc74b674e9cd148bf0ffab8eb830",
                "sha256": "74dff1496dd5e84b1630d2959f64688f921b83924e722659cb838fea6dcb5496"
            },
            "downloads": -1,
            "filename": "pyAKI-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "be76bc74b674e9cd148bf0ffab8eb830",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18493,
            "upload_time": "2024-04-18T09:33:19",
            "upload_time_iso_8601": "2024-04-18T09:33:19.405459Z",
            "url": "https://files.pythonhosted.org/packages/16/70/af67dabf6efdcedc0b940846569e944d23358635ab305076949ee7e235f2/pyAKI-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f185722d0f8a05bc51dd0667e01dc62024e75cde7ac83d0a7bfb02394f2fbe38",
                "md5": "e5bd505b99a53c2f8b69f8a244c3d642",
                "sha256": "cd249f6c4657f8cb1829dcf212e11ee2c1b98286bb3564f35e383746e6896326"
            },
            "downloads": -1,
            "filename": "pyaki-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "e5bd505b99a53c2f8b69f8a244c3d642",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 115007,
            "upload_time": "2024-04-18T09:33:21",
            "upload_time_iso_8601": "2024-04-18T09:33:21.667155Z",
            "url": "https://files.pythonhosted.org/packages/f1/85/722d0f8a05bc51dd0667e01dc62024e75cde7ac83d0a7bfb02394f2fbe38/pyaki-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-18 09:33:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AI2MS",
    "github_project": "pyAKI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pyaki"
}
        
Elapsed time: 0.23872s