pycaleva


Namepycaleva JSON
Version 0.8.2 PyPI version JSON
download
home_pagehttps://github.com/MartinWeigl/pycaleva
SummaryA framework for calibration evaluation of binary classification models
upload_time2024-05-02 20:51:08
maintainerNone
docs_urlNone
authorMartin Weigl
requires_pythonNone
licenseNone
keywords calibration classification model machine_learning statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![](https://martinweigl.github.io/pycaleva/assets/logo.svg)](https://martinweigl.github.io/pycaleva/)

[Documentation]: https://martinweigl.github.io/pycaleva/

### A framework for calibration evaluation of binary classification models.

---

When performing classification tasks you sometimes want to obtain the probability of a class label instead of the class label itself. For example, it might be interesting to determine the risk of cancer for a patient. It is desireable to have a calibrated model which delivers predicted probabilities very close to the actual class membership probabilities. For this reason, this framework was developed allowing users to **measure the calibration of binary classification models**.

- Evaluate the calibration of binary classification models with probabilistic output (LogisticRegression, SVM, NeuronalNets ...).
- Apply your model to testdata and use true class labels and predicted probabilities as input for the framework.
- Various statistical tests, metrics and plots are available.
- Supports creating a calibration report in pdf-format for your model.

\
<img src="https://martinweigl.github.io/pycaleva/assets/design.png" width="600" alt="Image Design">
\
\
See the [documentation] for detailed information about classes and methods.

## Installation

    $ pip install pycaleva

or build on your own

    $ git clone https://github.com/MartinWeigl/pycaleva.git
    $ cd pycaleva
    $ python setup.py install

## Requirements

- numpy>=1.26
- scipy>=1.13
- scikit-learn>=1.4
- matplotlib>=3.8
- tqdm>=4.66
- pandas>=2.2
- statsmodels>=0.14
- fpdf2>=2.7
- ipython>=8.24

## Usage

- Import and initialize
  ```python
  from pycaleva import CalibrationEvaluator
  ce = CalibrationEvaluator(y_test, pred_prob, outsample=True, n_groups='auto')
  ```
- Apply statistical tests
  ```python
  ce.hosmerlemeshow()     # Hosmer Lemeshow Test
  ce.pigeonheyse()        # Pigeon Heyse Test
  ce.z_test()             # Spiegelhalter z-Test
  ce.calbelt(plot=False)  # Calibrationi Belt (Test only)
  ```
- Show calibration plot
  ```python
  ce.calibration_plot()
  ```
- Show calibration belt
  ```python
  ce.calbelt(plot=True)
  ```
- Get various metrics
  ```python
  ce.metrics()
  ```
- Create pdf calibration report
  ```python
  ce.calibration_report('report.pdf', 'my_model')
  ```

See the [documentation] of single methods for detailed usage examples.

## Example Results

|                                                        Well calibrated model                                                        |                                                         Poorly calibrated model                                                         |
| :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------: |
| <img src="https://martinweigl.github.io/pycaleva/assets/calplot_well.png" width="65%" alt="Image Calibration plot well calibrated"> | <img src="https://martinweigl.github.io/pycaleva/assets/calplot_poorly.png" width="65%" alt="Image Calibration plot poorly calibrated"> |
| <img src="https://martinweigl.github.io/pycaleva/assets/calbelt_well.png" width="65%" alt="Image Calibration belt well calibrated"> |  <img src="https://martinweigl.github.io/pycaleva/assets/calbelt_poorly.png" width="65%" alt="Image Calibration belt well calibrated">  |
|                <pre lang="python">hltest_result(statistic=4.982635477424991, pvalue=0.8358193332183672, dof=9)</pre>                |                <pre lang="python">hltest_result(statistic=26.32792475118742, pvalue=0.0018051545107069522, dof=9)</pre>                 |
|                   <pre lang="python">ztest_result(statistic=-0.21590257919669287, pvalue=0.829063686607032)</pre>                   |                    <pre lang="python">ztest_result(statistic=-3.196125145498827, pvalue=0.0013928668407116645)</pre>                    |

## Features

- Statistical tests for binary model calibration
  - Hosmer Lemeshow Test
  - Pigeon Heyse Test
  - Spiegelhalter z-test
  - Calibration belt
- Graphical represantions showing calibration of binary models
  - Calibration plot
  - Calibration belt
- Various Metrics
  - Brier Score
  - Adaptive Calibration Error
  - Maximum Calibration Error
  - Area within LOWESS Curve
  - (AUROC)

The above features are explained in more detail in PyCalEva's [documentation]

## References

- **Statistical tests and metrics**:

  [1] Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdivant.
  Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.

  [2] Pigeon, Joseph G., and Joseph F. Heyse.
  An improved goodness of fit statistic for probability prediction models.
  Biometrical Journal: Journal of Mathematical Methods in Biosciences 41.1 (1999): 71-82.

  [3] Spiegelhalter, D. J. (1986). Probabilistic prediction in patient management and clinical trials.
  Statistics in medicine, 5(5), 421-433.

  [4] Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2020).
  A tutorial on calibration measurements and calibration models for clinical prediction models.
  Journal of the American Medical Informatics Association, 27(4), 621-633.

- **Calibration plot**:

  [5] Jr, F. E. H. (2021). rms: Regression modeling strategies (R package version
  6.2-0) [Computer software]. The Comprehensive R Archive Network.
  Available from https://CRAN.R-project.org/package=rms

- **Calibration belt**:

  [6] Nattino, G., Finazzi, S., & Bertolini, G. (2014). A new calibration test
  and a reappraisal of the calibration belt for the assessment of prediction models
  based on dichotomous outcomes. Statistics in medicine, 33(14), 2390-2407.

  [7] Bulgarelli, L. (2021). calibrattion-belt: Assessment of calibration in binomial prediction models [Computer software].
  Available from https://github.com/fabiankueppers/calibration-framework

  [8] Nattino, G., Finazzi, S., Bertolini, G., Rossi, C., & Carrara, G. (2017).
  givitiR: The giviti calibration test and belt (R package version 1.3) [Computer
  software]. The Comprehensive R Archive Network.
  Available from https://CRAN.R-project.org/package=givitiR

- **Others**:

  [9] Sturges, H. A. (1926). The choice of a class interval.
  Journal of the american statistical association, 21(153), 65-66.

For most of the implemented methods in this software you can find references in the [documentation] as well.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MartinWeigl/pycaleva",
    "name": "pycaleva",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "calibration, classification, model, machine_learning, statistics",
    "author": "Martin Weigl",
    "author_email": "martinweigl48@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/40/37/a3cccb5e5274c1783a27cd1c4ea6378e315e9c7c4e42887e594be574f981/pycaleva-0.8.2.tar.gz",
    "platform": null,
    "description": "[![](https://martinweigl.github.io/pycaleva/assets/logo.svg)](https://martinweigl.github.io/pycaleva/)\n\n[Documentation]: https://martinweigl.github.io/pycaleva/\n\n### A framework for calibration evaluation of binary classification models.\n\n---\n\nWhen performing classification tasks you sometimes want to obtain the probability of a class label instead of the class label itself. For example, it might be interesting to determine the risk of cancer for a patient. It is desireable to have a calibrated model which delivers predicted probabilities very close to the actual class membership probabilities. For this reason, this framework was developed allowing users to **measure the calibration of binary classification models**.\n\n- Evaluate the calibration of binary classification models with probabilistic output (LogisticRegression, SVM, NeuronalNets ...).\n- Apply your model to testdata and use true class labels and predicted probabilities as input for the framework.\n- Various statistical tests, metrics and plots are available.\n- Supports creating a calibration report in pdf-format for your model.\n\n\\\n<img src=\"https://martinweigl.github.io/pycaleva/assets/design.png\" width=\"600\" alt=\"Image Design\">\n\\\n\\\nSee the [documentation] for detailed information about classes and methods.\n\n## Installation\n\n    $ pip install pycaleva\n\nor build on your own\n\n    $ git clone https://github.com/MartinWeigl/pycaleva.git\n    $ cd pycaleva\n    $ python setup.py install\n\n## Requirements\n\n- numpy>=1.26\n- scipy>=1.13\n- scikit-learn>=1.4\n- matplotlib>=3.8\n- tqdm>=4.66\n- pandas>=2.2\n- statsmodels>=0.14\n- fpdf2>=2.7\n- ipython>=8.24\n\n## Usage\n\n- Import and initialize\n  ```python\n  from pycaleva import CalibrationEvaluator\n  ce = CalibrationEvaluator(y_test, pred_prob, outsample=True, n_groups='auto')\n  ```\n- Apply statistical tests\n  ```python\n  ce.hosmerlemeshow()     # Hosmer Lemeshow Test\n  ce.pigeonheyse()        # Pigeon Heyse Test\n  ce.z_test()             # Spiegelhalter z-Test\n  ce.calbelt(plot=False)  # Calibrationi Belt (Test only)\n  ```\n- Show calibration plot\n  ```python\n  ce.calibration_plot()\n  ```\n- Show calibration belt\n  ```python\n  ce.calbelt(plot=True)\n  ```\n- Get various metrics\n  ```python\n  ce.metrics()\n  ```\n- Create pdf calibration report\n  ```python\n  ce.calibration_report('report.pdf', 'my_model')\n  ```\n\nSee the [documentation] of single methods for detailed usage examples.\n\n## Example Results\n\n|                                                        Well calibrated model                                                        |                                                         Poorly calibrated model                                                         |\n| :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------: |\n| <img src=\"https://martinweigl.github.io/pycaleva/assets/calplot_well.png\" width=\"65%\" alt=\"Image Calibration plot well calibrated\"> | <img src=\"https://martinweigl.github.io/pycaleva/assets/calplot_poorly.png\" width=\"65%\" alt=\"Image Calibration plot poorly calibrated\"> |\n| <img src=\"https://martinweigl.github.io/pycaleva/assets/calbelt_well.png\" width=\"65%\" alt=\"Image Calibration belt well calibrated\"> |  <img src=\"https://martinweigl.github.io/pycaleva/assets/calbelt_poorly.png\" width=\"65%\" alt=\"Image Calibration belt well calibrated\">  |\n|                <pre lang=\"python\">hltest_result(statistic=4.982635477424991, pvalue=0.8358193332183672, dof=9)</pre>                |                <pre lang=\"python\">hltest_result(statistic=26.32792475118742, pvalue=0.0018051545107069522, dof=9)</pre>                 |\n|                   <pre lang=\"python\">ztest_result(statistic=-0.21590257919669287, pvalue=0.829063686607032)</pre>                   |                    <pre lang=\"python\">ztest_result(statistic=-3.196125145498827, pvalue=0.0013928668407116645)</pre>                    |\n\n## Features\n\n- Statistical tests for binary model calibration\n  - Hosmer Lemeshow Test\n  - Pigeon Heyse Test\n  - Spiegelhalter z-test\n  - Calibration belt\n- Graphical represantions showing calibration of binary models\n  - Calibration plot\n  - Calibration belt\n- Various Metrics\n  - Brier Score\n  - Adaptive Calibration Error\n  - Maximum Calibration Error\n  - Area within LOWESS Curve\n  - (AUROC)\n\nThe above features are explained in more detail in PyCalEva's [documentation]\n\n## References\n\n- **Statistical tests and metrics**:\n\n  [1] Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdivant.\n  Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.\n\n  [2] Pigeon, Joseph G., and Joseph F. Heyse.\n  An improved goodness of fit statistic for probability prediction models.\n  Biometrical Journal: Journal of Mathematical Methods in Biosciences\u00a041.1 (1999): 71-82.\n\n  [3] Spiegelhalter, D. J. (1986). Probabilistic prediction in patient management and clinical trials.\n  Statistics in medicine, 5(5), 421-433.\n\n  [4] Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2020).\n  A tutorial on calibration measurements and calibration models for clinical prediction models.\n  Journal of the American Medical Informatics Association, 27(4), 621-633.\n\n- **Calibration plot**:\n\n  [5] Jr, F. E. H. (2021). rms: Regression modeling strategies (R package version\n  6.2-0) [Computer software]. The Comprehensive R Archive Network.\n  Available from https://CRAN.R-project.org/package=rms\n\n- **Calibration belt**:\n\n  [6] Nattino, G., Finazzi, S., & Bertolini, G. (2014). A new calibration test\n  and a reappraisal of the calibration belt for the assessment of prediction models\n  based on dichotomous outcomes. Statistics in medicine, 33(14), 2390-2407.\n\n  [7] Bulgarelli, L. (2021). calibrattion-belt: Assessment of calibration in binomial prediction models [Computer software].\n  Available from https://github.com/fabiankueppers/calibration-framework\n\n  [8] Nattino, G., Finazzi, S., Bertolini, G., Rossi, C., & Carrara, G. (2017).\n  givitiR: The giviti calibration test and belt (R package version 1.3) [Computer\n  software]. The Comprehensive R Archive Network.\n  Available from https://CRAN.R-project.org/package=givitiR\n\n- **Others**:\n\n  [9] Sturges, H. A. (1926). The choice of a class interval.\n  Journal of the american statistical association, 21(153), 65-66.\n\nFor most of the implemented methods in this software you can find references in the [documentation] as well.\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A framework for calibration evaluation of binary classification models",
    "version": "0.8.2",
    "project_urls": {
        "Documentation": "https://martinweigl.github.io/pycaleva/",
        "Homepage": "https://github.com/MartinWeigl/pycaleva",
        "Source": "https://github.com/MartinWeigl/pycaleva"
    },
    "split_keywords": [
        "calibration",
        " classification",
        " model",
        " machine_learning",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6e793c3eacc17a20e64c4f3a28d470ba71f4761d769574a8a47f9915ae6488a9",
                "md5": "0364b64530d764ec3e1a90c39aec7285",
                "sha256": "a6b5b8b94c34d56f9555290ce5d14fe976f62180c99011edbbbd8e4d0f844b10"
            },
            "downloads": -1,
            "filename": "pycaleva-0.8.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0364b64530d764ec3e1a90c39aec7285",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 24531,
            "upload_time": "2024-05-02T20:51:06",
            "upload_time_iso_8601": "2024-05-02T20:51:06.624614Z",
            "url": "https://files.pythonhosted.org/packages/6e/79/3c3eacc17a20e64c4f3a28d470ba71f4761d769574a8a47f9915ae6488a9/pycaleva-0.8.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4037a3cccb5e5274c1783a27cd1c4ea6378e315e9c7c4e42887e594be574f981",
                "md5": "9e69f367d0dcbc19901b64b8450457d9",
                "sha256": "3fd086804dd5752daefb5c6e125378d9a0cdde91083df8b9a866828e164b2419"
            },
            "downloads": -1,
            "filename": "pycaleva-0.8.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9e69f367d0dcbc19901b64b8450457d9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 23061,
            "upload_time": "2024-05-02T20:51:08",
            "upload_time_iso_8601": "2024-05-02T20:51:08.671820Z",
            "url": "https://files.pythonhosted.org/packages/40/37/a3cccb5e5274c1783a27cd1c4ea6378e315e9c7c4e42887e594be574f981/pycaleva-0.8.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-02 20:51:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MartinWeigl",
    "github_project": "pycaleva",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "pycaleva"
}
        
Elapsed time: 0.28389s