Name | pycocoevalcap JSON |
Version |
1.2
JSON |
| download |
home_page | https://github.com/salaniz/pycocoevalcap |
Summary | MS-COCO Caption Evaluation for Python 3 |
upload_time | 2020-11-18 12:03:42 |
maintainer | salaniz |
docs_url | None |
author | |
requires_python | >=3 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Microsoft COCO Caption Evaluation
===================
Evaluation codes for MS COCO caption generation.
## Description ##
This repository provides Python 3 support for the caption evaluation metrics used for the MS COCO dataset.
The code is derived from the original repository that supports Python 2.7: https://github.com/tylin/coco-caption.
Caption evaluation depends on the COCO API that natively supports Python 3.
## Requirements ##
- Java 1.8.0
- Python 3
## Installation ##
To install pycocoevalcap and the pycocotools dependency (https://github.com/cocodataset/cocoapi), run:
```
pip install pycocoevalcap
```
## Usage ##
See the example script: [example/coco_eval_example.py](example/coco_eval_example.py)
## Files ##
./
- eval.py: The file includes COCOEavlCap class that can be used to evaluate results on COCO.
- tokenizer: Python wrapper of Stanford CoreNLP PTBTokenizer
- bleu: Bleu evalutation codes
- meteor: Meteor evaluation codes
- rouge: Rouge-L evaluation codes
- cider: CIDEr evaluation codes
- spice: SPICE evaluation codes
## Setup ##
- SPICE requires the download of [Stanford CoreNLP 3.6.0](http://stanfordnlp.github.io/CoreNLP/index.html) code and models. This will be done automatically the first time the SPICE evaluation is performed.
- Note: SPICE will try to create a cache of parsed sentences in ./spice/cache/. This dramatically speeds up repeated evaluations. The cache directory can be moved by setting 'CACHE_DIR' in ./spice. In the same file, caching can be turned off by removing the '-cache' argument to 'spice_cmd'.
## References ##
- [Microsoft COCO Captions: Data Collection and Evaluation Server](http://arxiv.org/abs/1504.00325)
- PTBTokenizer: We use the [Stanford Tokenizer](http://nlp.stanford.edu/software/tokenizer.shtml) which is included in [Stanford CoreNLP 3.4.1](http://nlp.stanford.edu/software/corenlp.shtml).
- BLEU: [BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf)
- Meteor: [Project page](http://www.cs.cmu.edu/~alavie/METEOR/) with related publications. We use the latest version (1.5) of the [Code](https://github.com/mjdenkowski/meteor). Changes have been made to the source code to properly aggreate the statistics for the entire corpus.
- Rouge-L: [ROUGE: A Package for Automatic Evaluation of Summaries](http://anthology.aclweb.org/W/W04/W04-1013.pdf)
- CIDEr: [CIDEr: Consensus-based Image Description Evaluation](http://arxiv.org/pdf/1411.5726.pdf)
- SPICE: [SPICE: Semantic Propositional Image Caption Evaluation](https://arxiv.org/abs/1607.08822)
## Developers ##
- Xinlei Chen (CMU)
- Hao Fang (University of Washington)
- Tsung-Yi Lin (Cornell)
- Ramakrishna Vedantam (Virgina Tech)
## Acknowledgement ##
- David Chiang (University of Norte Dame)
- Michael Denkowski (CMU)
- Alexander Rush (Harvard University)
Raw data
{
"_id": null,
"home_page": "https://github.com/salaniz/pycocoevalcap",
"name": "pycocoevalcap",
"maintainer": "salaniz",
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": "",
"keywords": "",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/ae/d7/6b77c7cddc3832ec4c551633c787aeeda168cc2e0ff173649ce145f1b85c/pycocoevalcap-1.2.tar.gz",
"platform": "",
"description": "Microsoft COCO Caption Evaluation\n===================\n\nEvaluation codes for MS COCO caption generation.\n\n## Description ##\nThis repository provides Python 3 support for the caption evaluation metrics used for the MS COCO dataset.\n\nThe code is derived from the original repository that supports Python 2.7: https://github.com/tylin/coco-caption. \nCaption evaluation depends on the COCO API that natively supports Python 3.\n\n## Requirements ##\n- Java 1.8.0\n- Python 3\n\n## Installation ##\nTo install pycocoevalcap and the pycocotools dependency (https://github.com/cocodataset/cocoapi), run:\n```\npip install pycocoevalcap\n```\n\n## Usage ##\nSee the example script: [example/coco_eval_example.py](example/coco_eval_example.py)\n\n## Files ##\n./\n- eval.py: The file includes COCOEavlCap class that can be used to evaluate results on COCO.\n- tokenizer: Python wrapper of Stanford CoreNLP PTBTokenizer\n- bleu: Bleu evalutation codes\n- meteor: Meteor evaluation codes\n- rouge: Rouge-L evaluation codes\n- cider: CIDEr evaluation codes\n- spice: SPICE evaluation codes\n\n## Setup ##\n\n- SPICE requires the download of [Stanford CoreNLP 3.6.0](http://stanfordnlp.github.io/CoreNLP/index.html) code and models. This will be done automatically the first time the SPICE evaluation is performed.\n- Note: SPICE will try to create a cache of parsed sentences in ./spice/cache/. This dramatically speeds up repeated evaluations. The cache directory can be moved by setting 'CACHE_DIR' in ./spice. In the same file, caching can be turned off by removing the '-cache' argument to 'spice_cmd'.\n\n## References ##\n\n- [Microsoft COCO Captions: Data Collection and Evaluation Server](http://arxiv.org/abs/1504.00325)\n- PTBTokenizer: We use the [Stanford Tokenizer](http://nlp.stanford.edu/software/tokenizer.shtml) which is included in [Stanford CoreNLP 3.4.1](http://nlp.stanford.edu/software/corenlp.shtml).\n- BLEU: [BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf)\n- Meteor: [Project page](http://www.cs.cmu.edu/~alavie/METEOR/) with related publications. We use the latest version (1.5) of the [Code](https://github.com/mjdenkowski/meteor). Changes have been made to the source code to properly aggreate the statistics for the entire corpus.\n- Rouge-L: [ROUGE: A Package for Automatic Evaluation of Summaries](http://anthology.aclweb.org/W/W04/W04-1013.pdf)\n- CIDEr: [CIDEr: Consensus-based Image Description Evaluation](http://arxiv.org/pdf/1411.5726.pdf)\n- SPICE: [SPICE: Semantic Propositional Image Caption Evaluation](https://arxiv.org/abs/1607.08822)\n\n## Developers ##\n- Xinlei Chen (CMU)\n- Hao Fang (University of Washington)\n- Tsung-Yi Lin (Cornell)\n- Ramakrishna Vedantam (Virgina Tech)\n\n## Acknowledgement ##\n- David Chiang (University of Norte Dame)\n- Michael Denkowski (CMU)\n- Alexander Rush (Harvard University)\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "MS-COCO Caption Evaluation for Python 3",
"version": "1.2",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "08f9466f289f1628296b5e368940f89e3cfcfb066d15ddc02ff536dc532b1c93",
"md5": "14526e84cc463601a44f9e8536e2eff7",
"sha256": "083ed7910f1aec000b0a237ef6665f74edf19954204d0b1cbdb8399ed132228d"
},
"downloads": -1,
"filename": "pycocoevalcap-1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "14526e84cc463601a44f9e8536e2eff7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 104312215,
"upload_time": "2020-11-18T11:56:23",
"upload_time_iso_8601": "2020-11-18T11:56:23.026174Z",
"url": "https://files.pythonhosted.org/packages/08/f9/466f289f1628296b5e368940f89e3cfcfb066d15ddc02ff536dc532b1c93/pycocoevalcap-1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "aed76b77c7cddc3832ec4c551633c787aeeda168cc2e0ff173649ce145f1b85c",
"md5": "0e36bfd9f50d767100ace969d995dc0d",
"sha256": "7857f4d596ca2fa0b1a9a3c2067588a4257556077b7ad614d00b2b7b8f57cdde"
},
"downloads": -1,
"filename": "pycocoevalcap-1.2.tar.gz",
"has_sig": false,
"md5_digest": "0e36bfd9f50d767100ace969d995dc0d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3",
"size": 104309308,
"upload_time": "2020-11-18T12:03:42",
"upload_time_iso_8601": "2020-11-18T12:03:42.138940Z",
"url": "https://files.pythonhosted.org/packages/ae/d7/6b77c7cddc3832ec4c551633c787aeeda168cc2e0ff173649ce145f1b85c/pycocoevalcap-1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-11-18 12:03:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "salaniz",
"github_project": "pycocoevalcap",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pycocoevalcap"
}