pycorruptor


Namepycorruptor JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/WenjieDu/PyCorruptor
SummaryA Python Toolbox for Data Corruption
upload_time2022-05-17 09:32:51
maintainer
docs_urlNone
authorWenjie Du
requires_python
licenseGPL-3.0
keywords missing data missing values data corruption incomplete data partial observation data mining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a href='https://github.com/WenjieDu/PyCorruptor'><img src='https://raw.githubusercontent.com/WenjieDu/PyCorruptor/main/docs/figs/PyCorruptor.svg?sanitize=true' width='300' align='right' /></a>

# <p align='center'>Welcome to PyCorruptor</p>
**<p align='center'>A Python Toolbox for Data Corruption</p>**
<p align='center'>
    <!-- Python version -->
    <img src='https://img.shields.io/badge/python-v3-yellowgreen'>
    <!-- PyPI version -->
    <img alt="PyPI" src="https://img.shields.io/pypi/v/pycorruptor?color=green&label=PyPI">
	<!-- PyPI download number -->
    <a alt='PyPI download number' href='https://pypi.org/project/pycorruptor'>
        <img src='https://static.pepy.tech/personalized-badge/pycorruptor?period=total&units=international_system&left_color=gray&right_color=blue&left_text=Total%20Downloads'>
    </a>
    <!-- Visit number -->
    <img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FWenjieDu%2FPyCorruptor&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Visits&edge_flat=false'>
</p>

In data analysis and modeling, sometimes we may need to corrupt the original data to achieve our goal, for instance, evaluating models' ability to reconstruct corrupted data or assessing the model's performance on only partially-observed data. PyCorruptor is such a tool to help you corrupt your data, which provides several patterns to create missing values in the given data.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/WenjieDu/PyCorruptor",
    "name": "pycorruptor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "missing data,missing values,data corruption,incomplete data,partial observation,data mining",
    "author": "Wenjie Du",
    "author_email": "wenjay.du@gmail.com",
    "download_url": "https://github.com/WenjieDu/PyCorruptor/archive/main.zip",
    "platform": null,
    "description": "<a href='https://github.com/WenjieDu/PyCorruptor'><img src='https://raw.githubusercontent.com/WenjieDu/PyCorruptor/main/docs/figs/PyCorruptor.svg?sanitize=true' width='300' align='right' /></a>\n\n# <p align='center'>Welcome to PyCorruptor</p>\n**<p align='center'>A Python Toolbox for Data Corruption</p>**\n<p align='center'>\n    <!-- Python version -->\n    <img src='https://img.shields.io/badge/python-v3-yellowgreen'>\n    <!-- PyPI version -->\n    <img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/pycorruptor?color=green&label=PyPI\">\n\t<!-- PyPI download number -->\n    <a alt='PyPI download number' href='https://pypi.org/project/pycorruptor'>\n        <img src='https://static.pepy.tech/personalized-badge/pycorruptor?period=total&units=international_system&left_color=gray&right_color=blue&left_text=Total%20Downloads'>\n    </a>\n    <!-- Visit number -->\n    <img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FWenjieDu%2FPyCorruptor&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Visits&edge_flat=false'>\n</p>\n\nIn data analysis and modeling, sometimes we may need to corrupt the original data to achieve our goal, for instance, evaluating models' ability to reconstruct corrupted data or assessing the model's performance on only partially-observed data. PyCorruptor is such a tool to help you corrupt your data, which provides several patterns to create missing values in the given data.\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "A Python Toolbox for Data Corruption",
    "version": "0.0.4",
    "split_keywords": [
        "missing data",
        "missing values",
        "data corruption",
        "incomplete data",
        "partial observation",
        "data mining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "b96e292c110a399db37e03c5fdd984d0",
                "sha256": "eb92edc8f470c6dc90aa78f76d17b1d7ff068b42e0a8b0c84be7dd6cac277f1f"
            },
            "downloads": -1,
            "filename": "pycorruptor-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b96e292c110a399db37e03c5fdd984d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17303,
            "upload_time": "2022-05-17T09:32:51",
            "upload_time_iso_8601": "2022-05-17T09:32:51.560577Z",
            "url": "https://files.pythonhosted.org/packages/c2/c5/fa1f299db64bd4fb6d2048c16860a6068c311c2af344ba2b554fad5d6790/pycorruptor-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-05-17 09:32:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "WenjieDu",
    "github_project": "PyCorruptor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pycorruptor"
}
        
Elapsed time: 0.04148s