<a href='https://github.com/WenjieDu/PyCorruptor'><img src='https://raw.githubusercontent.com/WenjieDu/PyCorruptor/main/docs/figs/PyCorruptor.svg?sanitize=true' width='300' align='right' /></a>
# <p align='center'>Welcome to PyCorruptor</p>
**<p align='center'>A Python Toolbox for Data Corruption</p>**
<p align='center'>
<!-- Python version -->
<img src='https://img.shields.io/badge/python-v3-yellowgreen'>
<!-- PyPI version -->
<img alt="PyPI" src="https://img.shields.io/pypi/v/pycorruptor?color=green&label=PyPI">
<!-- PyPI download number -->
<a alt='PyPI download number' href='https://pypi.org/project/pycorruptor'>
<img src='https://static.pepy.tech/personalized-badge/pycorruptor?period=total&units=international_system&left_color=gray&right_color=blue&left_text=Total%20Downloads'>
</a>
<!-- Visit number -->
<img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FWenjieDu%2FPyCorruptor&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Visits&edge_flat=false'>
</p>
In data analysis and modeling, sometimes we may need to corrupt the original data to achieve our goal, for instance, evaluating models' ability to reconstruct corrupted data or assessing the model's performance on only partially-observed data. PyCorruptor is such a tool to help you corrupt your data, which provides several patterns to create missing values in the given data.
Raw data
{
"_id": null,
"home_page": "https://github.com/WenjieDu/PyCorruptor",
"name": "pycorruptor",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "missing data,missing values,data corruption,incomplete data,partial observation,data mining",
"author": "Wenjie Du",
"author_email": "wenjay.du@gmail.com",
"download_url": "https://github.com/WenjieDu/PyCorruptor/archive/main.zip",
"platform": null,
"description": "<a href='https://github.com/WenjieDu/PyCorruptor'><img src='https://raw.githubusercontent.com/WenjieDu/PyCorruptor/main/docs/figs/PyCorruptor.svg?sanitize=true' width='300' align='right' /></a>\n\n# <p align='center'>Welcome to PyCorruptor</p>\n**<p align='center'>A Python Toolbox for Data Corruption</p>**\n<p align='center'>\n <!-- Python version -->\n <img src='https://img.shields.io/badge/python-v3-yellowgreen'>\n <!-- PyPI version -->\n <img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/pycorruptor?color=green&label=PyPI\">\n\t<!-- PyPI download number -->\n <a alt='PyPI download number' href='https://pypi.org/project/pycorruptor'>\n <img src='https://static.pepy.tech/personalized-badge/pycorruptor?period=total&units=international_system&left_color=gray&right_color=blue&left_text=Total%20Downloads'>\n </a>\n <!-- Visit number -->\n <img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FWenjieDu%2FPyCorruptor&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Visits&edge_flat=false'>\n</p>\n\nIn data analysis and modeling, sometimes we may need to corrupt the original data to achieve our goal, for instance, evaluating models' ability to reconstruct corrupted data or assessing the model's performance on only partially-observed data. PyCorruptor is such a tool to help you corrupt your data, which provides several patterns to create missing values in the given data.\n\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "A Python Toolbox for Data Corruption",
"version": "0.0.4",
"split_keywords": [
"missing data",
"missing values",
"data corruption",
"incomplete data",
"partial observation",
"data mining"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "b96e292c110a399db37e03c5fdd984d0",
"sha256": "eb92edc8f470c6dc90aa78f76d17b1d7ff068b42e0a8b0c84be7dd6cac277f1f"
},
"downloads": -1,
"filename": "pycorruptor-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b96e292c110a399db37e03c5fdd984d0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17303,
"upload_time": "2022-05-17T09:32:51",
"upload_time_iso_8601": "2022-05-17T09:32:51.560577Z",
"url": "https://files.pythonhosted.org/packages/c2/c5/fa1f299db64bd4fb6d2048c16860a6068c311c2af344ba2b554fad5d6790/pycorruptor-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-05-17 09:32:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "WenjieDu",
"github_project": "PyCorruptor",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pycorruptor"
}