Name | pycrafter JSON |
Version |
0.0.7
JSON |
| download |
home_page | |
Summary | Text extraction from images using ONNX runtime and CRAFT net |
upload_time | 2023-09-22 15:15:35 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.8 |
license | |
keywords |
craft
ocr
neural net
onnx
text detection
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Crafter
CRAFT text detection with ONNX Runtime
Based on the [craft-text-detector](https://github.com/innodatalabs/craft-text-detector). See also the source of the fork [here](https://github.com/fcakyon/craft-text-detector).
## Installation
```bash
$ pip install crafter
```
## Usage
```python
from crafter import Crafter
crafter = Crafter()
prediction = crafter('crafter/test/resources/idcard2.jpg')
for p1, p2, p3, p4 in prediction['boxes']:
print(p1, p2, p3, p4)
```
## Developing
```bash
$ pip install .
$ pip install onnx git@github.com:innodatalabs/craft-text-detector.git pytest
```
To download Pytorch weights and convert to ONNX, run this (once):
```bash
$ python convert/craftnet.py
$ python convert/refinenet.py
```
This will (re-)create the ONNX files in `crafter/resources`.
## Testing
```bash
$ PYTHONPATH+. pytest
```
## Building
```bash
$ make
```
Raw data
{
"_id": null,
"home_page": "",
"name": "pycrafter",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "CRAFT,OCR,neural net,onnx,text detection",
"author": "",
"author_email": "Mike Kroutikov <mkroutikov@innodata.com>",
"download_url": "",
"platform": null,
"description": "# Crafter\nCRAFT text detection with ONNX Runtime\n\nBased on the [craft-text-detector](https://github.com/innodatalabs/craft-text-detector). See also the source of the fork [here](https://github.com/fcakyon/craft-text-detector).\n\n## Installation\n```bash\n$ pip install crafter\n```\n\n## Usage\n```python\nfrom crafter import Crafter\n\ncrafter = Crafter()\n\nprediction = crafter('crafter/test/resources/idcard2.jpg')\nfor p1, p2, p3, p4 in prediction['boxes']:\n print(p1, p2, p3, p4)\n```\n\n## Developing\n```bash\n$ pip install .\n$ pip install onnx git@github.com:innodatalabs/craft-text-detector.git pytest\n```\n\nTo download Pytorch weights and convert to ONNX, run this (once):\n```bash\n$ python convert/craftnet.py\n$ python convert/refinenet.py\n```\nThis will (re-)create the ONNX files in `crafter/resources`.\n\n## Testing\n```bash\n$ PYTHONPATH+. pytest\n```\n\n## Building\n```bash\n$ make\n```",
"bugtrack_url": null,
"license": "",
"summary": "Text extraction from images using ONNX runtime and CRAFT net",
"version": "0.0.7",
"project_urls": {
"Homepage": "https://github.com/innodatalabs/crafter",
"Source": "https://github.com/innodatalabs/crafter"
},
"split_keywords": [
"craft",
"ocr",
"neural net",
"onnx",
"text detection"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d956020f9653668a28d7f969ae339f4fac3c5289bf2cd479c3fdd15600c7ab76",
"md5": "1a5953fe626bb341b0bd26eea3e6262d",
"sha256": "3f11551ab195c96a6aff71190bbd9465e86a4bb8da218a37bdb180805291bc4b"
},
"downloads": -1,
"filename": "pycrafter-0.0.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1a5953fe626bb341b0bd26eea3e6262d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 78873863,
"upload_time": "2023-09-22T15:15:35",
"upload_time_iso_8601": "2023-09-22T15:15:35.690443Z",
"url": "https://files.pythonhosted.org/packages/d9/56/020f9653668a28d7f969ae339f4fac3c5289bf2cd479c3fdd15600c7ab76/pycrafter-0.0.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-22 15:15:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "innodatalabs",
"github_project": "crafter",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pycrafter"
}