pycroscopy


Namepycroscopy JSON
Version 0.63.3 PyPI version JSON
download
home_pagehttps://pycroscopy.github.io/pycroscopy/about.html
SummaryPython library for scientific analysis of microscopy data
upload_time2024-06-05 21:32:48
maintainerNone
docs_urlNone
authorPycroscopy contributors
requires_pythonNone
licenseMIT
keywords eels stem tem xrd afm spm sts band excitation be beps raman nanoir electron microscopy scanning probe x-rays atomic force microscopy sims energy spectroscopy imaging microscopy spectracharacterization spectrogram hyperspectral multidimensional data format universal clustering decomposition curve fitting data analysis pca svd nmf dbscan kmeans machine learning bayesian inference fft filtering signal processing image cleaning denoising model msa quantification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ==========
pycroscopy
==========

.. image:: http://pepy.tech/badge/pycroscopy
    :target: http://pepy.tech/project/pycroscopy
    :alt: Downloads

.. image:: https://github.com/pycroscopy/pycroscopy/workflows/build/badge.svg?branch=main
    :target: https://github.com/pycroscopy/pycroscopy/actions?query=workflow%3Abuild
    :alt: GitHub Actions
    
.. image:: https://img.shields.io/pypi/v/pycroscopy.svg
    :target: https://pypi.org/project/pyCroscopy/
    :alt: PyPI
    
.. image:: https://codecov.io/gh/pycroscopy/pycroscopy/branch/main/graph/badge.svg?token=HXGZMKzJqb
    :target: https://codecov.io/gh/pycroscopy/pycroscopy
    :alt: coverage
    
.. image:: https://img.shields.io/conda/vn/conda-forge/pycroscopy.svg
    :target: https://github.com/conda-forge/pycroscopy-feedstock
    :alt: conda-forge

.. image:: https://img.shields.io/pypi/l/pycroscopy.svg
    :target: https://pypi.org/project/pyCroscopy/
    :alt: License
    
.. image:: https://zenodo.org/badge/61456133.svg
   :target: https://zenodo.org/badge/latestdoi/61456133
   :alt: DOI
   
.. image:: https://colab.research.google.com/assets/colab-badge.svg
   :target: https://colab.research.google.com/github/pycroscopy/pycroscopy/blob/main/jupyter_notebooks/Intro_to_Pycroscopy.ipynb
   :alt: Notebook

pycroscopy is a `python <http://www.python.org/>`_ package for generic (domain-agnostic) microscopy data anlaysis. More specialized or domain-specific analysis routines are contained within some of the other packages within the pycroscopy ecosystem.

Please visit our `homepage <https://pycroscopy.github.io/pycroscopy/about.html>`_ for more information and installation instructions.

If you use pycroscopy for research, we would appreciate if you could cite our `Arxiv paper <https://arxiv.org/abs/1903.09515>`_ titled "USID and Pycroscopy - Open frameworks for storing and analyzing spectroscopic and imaging data"



            

Raw data

            {
    "_id": null,
    "home_page": "https://pycroscopy.github.io/pycroscopy/about.html",
    "name": "pycroscopy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "EELS, STEM, TEM, XRD, AFM, SPM, STS, band excitation, BE, BEPS, Raman, NanoIR, electron microscopy, scanning probe, x-rays, atomic force microscopy, SIMS, energy, spectroscopy, imaging, microscopy, spectracharacterization, spectrogram, hyperspectral, multidimensional, data format, universal, clustering, decomposition, curve fitting, data analysis, PCA, SVD, NMF, DBSCAN, kMeans, machine learning, bayesian inference, fft filtering, signal processing, image cleaning, denoising, model, msa, quantification",
    "author": "Pycroscopy contributors",
    "author_email": "pycroscopy@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c7/40/6cbd46661fbaebfeffc96fa8d04f92eb6dac184f328f2e3587aa259308e2/pycroscopy-0.63.3.tar.gz",
    "platform": "Linux",
    "description": "==========\npycroscopy\n==========\n\n.. image:: http://pepy.tech/badge/pycroscopy\n    :target: http://pepy.tech/project/pycroscopy\n    :alt: Downloads\n\n.. image:: https://github.com/pycroscopy/pycroscopy/workflows/build/badge.svg?branch=main\n    :target: https://github.com/pycroscopy/pycroscopy/actions?query=workflow%3Abuild\n    :alt: GitHub Actions\n    \n.. image:: https://img.shields.io/pypi/v/pycroscopy.svg\n    :target: https://pypi.org/project/pyCroscopy/\n    :alt: PyPI\n    \n.. image:: https://codecov.io/gh/pycroscopy/pycroscopy/branch/main/graph/badge.svg?token=HXGZMKzJqb\n    :target: https://codecov.io/gh/pycroscopy/pycroscopy\n    :alt: coverage\n    \n.. image:: https://img.shields.io/conda/vn/conda-forge/pycroscopy.svg\n    :target: https://github.com/conda-forge/pycroscopy-feedstock\n    :alt: conda-forge\n\n.. image:: https://img.shields.io/pypi/l/pycroscopy.svg\n    :target: https://pypi.org/project/pyCroscopy/\n    :alt: License\n    \n.. image:: https://zenodo.org/badge/61456133.svg\n   :target: https://zenodo.org/badge/latestdoi/61456133\n   :alt: DOI\n   \n.. image:: https://colab.research.google.com/assets/colab-badge.svg\n   :target: https://colab.research.google.com/github/pycroscopy/pycroscopy/blob/main/jupyter_notebooks/Intro_to_Pycroscopy.ipynb\n   :alt: Notebook\n\npycroscopy is a `python <http://www.python.org/>`_ package for generic (domain-agnostic) microscopy data anlaysis. More specialized or domain-specific analysis routines are contained within some of the other packages within the pycroscopy ecosystem.\n\nPlease visit our `homepage <https://pycroscopy.github.io/pycroscopy/about.html>`_ for more information and installation instructions.\n\nIf you use pycroscopy for research, we would appreciate if you could cite our `Arxiv paper <https://arxiv.org/abs/1903.09515>`_ titled \"USID and Pycroscopy - Open frameworks for storing and analyzing spectroscopic and imaging data\"\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python library for scientific analysis of microscopy data",
    "version": "0.63.3",
    "project_urls": {
        "Homepage": "https://pycroscopy.github.io/pycroscopy/about.html"
    },
    "split_keywords": [
        "eels",
        " stem",
        " tem",
        " xrd",
        " afm",
        " spm",
        " sts",
        " band excitation",
        " be",
        " beps",
        " raman",
        " nanoir",
        " electron microscopy",
        " scanning probe",
        " x-rays",
        " atomic force microscopy",
        " sims",
        " energy",
        " spectroscopy",
        " imaging",
        " microscopy",
        " spectracharacterization",
        " spectrogram",
        " hyperspectral",
        " multidimensional",
        " data format",
        " universal",
        " clustering",
        " decomposition",
        " curve fitting",
        " data analysis",
        " pca",
        " svd",
        " nmf",
        " dbscan",
        " kmeans",
        " machine learning",
        " bayesian inference",
        " fft filtering",
        " signal processing",
        " image cleaning",
        " denoising",
        " model",
        " msa",
        " quantification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4cc85d27a40aadcb88663d217a142983c8e90cf1543c7b3874e810da9a174ab1",
                "md5": "2cfcb77bf9d728d1d2178898c9d7cb5c",
                "sha256": "55a7e065dd5960ba38a403f72a050e3f91bedb350eb67a7b5e6fe394d0527465"
            },
            "downloads": -1,
            "filename": "pycroscopy-0.63.3-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2cfcb77bf9d728d1d2178898c9d7cb5c",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 53190,
            "upload_time": "2024-06-05T21:32:45",
            "upload_time_iso_8601": "2024-06-05T21:32:45.227069Z",
            "url": "https://files.pythonhosted.org/packages/4c/c8/5d27a40aadcb88663d217a142983c8e90cf1543c7b3874e810da9a174ab1/pycroscopy-0.63.3-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c7406cbd46661fbaebfeffc96fa8d04f92eb6dac184f328f2e3587aa259308e2",
                "md5": "70c95a7bc5ea2cb1f7b7c1b44fee847e",
                "sha256": "d51e3733ee829a52ac4839f58e2880baa3488380022d8536d43e2671cdf15ac4"
            },
            "downloads": -1,
            "filename": "pycroscopy-0.63.3.tar.gz",
            "has_sig": false,
            "md5_digest": "70c95a7bc5ea2cb1f7b7c1b44fee847e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 45763,
            "upload_time": "2024-06-05T21:32:48",
            "upload_time_iso_8601": "2024-06-05T21:32:48.186802Z",
            "url": "https://files.pythonhosted.org/packages/c7/40/6cbd46661fbaebfeffc96fa8d04f92eb6dac184f328f2e3587aa259308e2/pycroscopy-0.63.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-05 21:32:48",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pycroscopy"
}
        
Elapsed time: 0.61089s