pycucim


Namepycucim JSON
Version 0.0.0 PyPI version JSON
download
home_pagehttps://developer.nvidia.com/cucim-for-image-io-processing
SummarycuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.
upload_time2024-11-06 06:17:22
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3.10
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/>&nbsp;cuCIM</div>

[RAPIDS](https://rapids.ai) cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.

cuCIM offers:

- Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files
- Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives
- A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide

cuCIM supports the following formats:

- Aperio ScanScope Virtual Slide (SVS)
- Philips TIFF
- Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:
  - No Compression
  - JPEG
  - JPEG2000
  - Lempel-Ziv-Welch (LZW)
  - Deflate

**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cucim/blob/main/README.md) ensure you are on the `main` branch.

- [GTC 2022 Accelerating Storage IO to GPUs with Magnum IO [S41347]](https://events.rainfocus.com/widget/nvidia/gtcspring2022/sessioncatalog/session/1634960000577001Etxp)
  - cuCIM's GDS API examples: <https://github.com/NVIDIA/MagnumIO/tree/main/gds/readers/cucim-gds>
- [SciPy 2021 cuCIM - A GPU image I/O and processing library](https://www.scipy2021.scipy.org/)
  - [video](https://youtu.be/G46kOOM9xbQ)
- [GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]](https://www.nvidia.com/en-us/on-demand/search/?facet.mimetype[]=event%20session&layout=list&page=1&q=cucim&sort=date)
  - [video](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32194/)

**[Developer Page](https://developer.nvidia.com/multidimensional-image-processing)**

**Blogs**
- [Enhanced Image Analysis with Multidimensional Image Processing](https://developer.nvidia.com/blog/enhanced-image-analysis-with-multidimensional-image-processing/)
- [Accelerating Scikit-Image API with cuCIM: n-Dimensional Image Processing and IO on GPUs](https://developer.nvidia.com/blog/cucim-rapid-n-dimensional-image-processing-and-i-o-on-gpus/)
- [Accelerating Digital Pathology Pipelines with NVIDIA Claraâ„¢ Deploy](https://developer.nvidia.com/blog/accelerating-digital-pathology-pipelines-with-nvidia-clara-deploy-2/)

**Webinars**

- [cuCIM: a GPU Image IO and Processing Library](https://www.youtube.com/watch?v=G46kOOM9xbQ)

**[Documentation](https://docs.rapids.ai/api/cucim/stable)**

**Release notes** are available on our [wiki page](https://github.com/rapidsai/cucim/wiki/Release-Notes).

## Install cuCIM

### Conda

#### [Conda (stable)](https://anaconda.org/rapidsai/cucim)

```bash
conda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`
```

`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)

#### [Conda (nightlies)](https://anaconda.org/rapidsai-nightly/cucim)

```bash
conda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`
```

`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)

### [PyPI](https://pypi.org/project/cucim/)

Install for CUDA 12:

```bash
pip install cucim-cu12
```

Alternatively install for CUDA 11:

```bash
pip install cucim-cu11
```

### Notebooks

Please check out our [Welcome](notebooks/Welcome.ipynb) notebook ([NBViewer](https://nbviewer.org/github/rapidsai/cucim/blob/main/notebooks/Welcome.ipynb))

#### Downloading sample images

To download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into `notebooks/input` folder:

(You will need [Docker](https://www.docker.com/) installed in your system)

```bash
./run download_testdata
```
or

```bash
mkdir -p notebooks/input
tmp_id=$(docker create gigony/svs-testdata:little-big)
docker cp $tmp_id:/input notebooks
docker rm -v ${tmp_id}
```

## Build/Install from Source

See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).

## Contributing Guide

Contributions to cuCIM are more than welcome!
Please review the [CONTRIBUTING.md](https://github.com/rapidsai/cucim/blob/main/CONTRIBUTING.md) file for information on how to contribute code and issues to the project.

## Acknowledgments

Without awesome third-party open source software, this project wouldn't exist.

Please find [LICENSE-3rdparty.md](LICENSE-3rdparty.md) to see which third-party open source software
is used in this project.

## License

Apache-2.0 License (see [LICENSE](LICENSE) file).

Copyright (c) 2020-2024, NVIDIA CORPORATION.

            

Raw data

            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/cucim-for-image-io-processing",
    "name": "pycucim",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d3/b0/96c4681b648f2d9e27932bff3e06b823d4940c112564063e27981753d501/pycucim-0.0.0.tar.gz",
    "platform": null,
    "description": "# <div align=\"left\"><img src=\"https://rapids.ai/assets/images/rapids_logo.png\" width=\"90px\"/>&nbsp;cuCIM</div>\n\n[RAPIDS](https://rapids.ai) cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.\n\ncuCIM offers:\n\n- Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files\n- Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives\n- A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide\n\ncuCIM supports the following formats:\n\n- Aperio ScanScope Virtual Slide (SVS)\n- Philips TIFF\n- Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:\n  - No Compression\n  - JPEG\n  - JPEG2000\n  - Lempel-Ziv-Welch (LZW)\n  - Deflate\n\n**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cucim/blob/main/README.md) ensure you are on the `main` branch.\n\n- [GTC 2022 Accelerating Storage IO to GPUs with Magnum IO [S41347]](https://events.rainfocus.com/widget/nvidia/gtcspring2022/sessioncatalog/session/1634960000577001Etxp)\n  - cuCIM's GDS API examples: <https://github.com/NVIDIA/MagnumIO/tree/main/gds/readers/cucim-gds>\n- [SciPy 2021 cuCIM - A GPU image I/O and processing library](https://www.scipy2021.scipy.org/)\n  - [video](https://youtu.be/G46kOOM9xbQ)\n- [GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]](https://www.nvidia.com/en-us/on-demand/search/?facet.mimetype[]=event%20session&layout=list&page=1&q=cucim&sort=date)\n  - [video](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32194/)\n\n**[Developer Page](https://developer.nvidia.com/multidimensional-image-processing)**\n\n**Blogs**\n- [Enhanced Image Analysis with Multidimensional Image Processing](https://developer.nvidia.com/blog/enhanced-image-analysis-with-multidimensional-image-processing/)\n- [Accelerating Scikit-Image API with cuCIM: n-Dimensional Image Processing and IO on GPUs](https://developer.nvidia.com/blog/cucim-rapid-n-dimensional-image-processing-and-i-o-on-gpus/)\n- [Accelerating Digital Pathology Pipelines with NVIDIA Clara\u2122 Deploy](https://developer.nvidia.com/blog/accelerating-digital-pathology-pipelines-with-nvidia-clara-deploy-2/)\n\n**Webinars**\n\n- [cuCIM: a GPU Image IO and Processing Library](https://www.youtube.com/watch?v=G46kOOM9xbQ)\n\n**[Documentation](https://docs.rapids.ai/api/cucim/stable)**\n\n**Release notes** are available on our [wiki page](https://github.com/rapidsai/cucim/wiki/Release-Notes).\n\n## Install cuCIM\n\n### Conda\n\n#### [Conda (stable)](https://anaconda.org/rapidsai/cucim)\n\n```bash\nconda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`\n```\n\n`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)\n\n#### [Conda (nightlies)](https://anaconda.org/rapidsai-nightly/cucim)\n\n```bash\nconda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`\n```\n\n`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)\n\n### [PyPI](https://pypi.org/project/cucim/)\n\nInstall for CUDA 12:\n\n```bash\npip install cucim-cu12\n```\n\nAlternatively install for CUDA 11:\n\n```bash\npip install cucim-cu11\n```\n\n### Notebooks\n\nPlease check out our [Welcome](notebooks/Welcome.ipynb) notebook ([NBViewer](https://nbviewer.org/github/rapidsai/cucim/blob/main/notebooks/Welcome.ipynb))\n\n#### Downloading sample images\n\nTo download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into `notebooks/input` folder:\n\n(You will need [Docker](https://www.docker.com/) installed in your system)\n\n```bash\n./run download_testdata\n```\nor\n\n```bash\nmkdir -p notebooks/input\ntmp_id=$(docker create gigony/svs-testdata:little-big)\ndocker cp $tmp_id:/input notebooks\ndocker rm -v ${tmp_id}\n```\n\n## Build/Install from Source\n\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing Guide\n\nContributions to cuCIM are more than welcome!\nPlease review the [CONTRIBUTING.md](https://github.com/rapidsai/cucim/blob/main/CONTRIBUTING.md) file for information on how to contribute code and issues to the project.\n\n## Acknowledgments\n\nWithout awesome third-party open source software, this project wouldn't exist.\n\nPlease find [LICENSE-3rdparty.md](LICENSE-3rdparty.md) to see which third-party open source software\nis used in this project.\n\n## License\n\nApache-2.0 License (see [LICENSE](LICENSE) file).\n\nCopyright (c) 2020-2024, NVIDIA CORPORATION.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.",
    "version": "0.0.0",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/cucim-for-image-io-processing"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "39a1dd8906206428fe49687a5a3e718ab698e3a26994407623302eff7f68938d",
                "md5": "efbd62ad3966fe765a3bb725d146bc63",
                "sha256": "fdd18436e3ba2f7f4aaef029d8d930efbe4ca2aeb81245437d18456e48e7bd85"
            },
            "downloads": -1,
            "filename": "pycucim-0.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "efbd62ad3966fe765a3bb725d146bc63",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 3554,
            "upload_time": "2024-11-06T06:17:21",
            "upload_time_iso_8601": "2024-11-06T06:17:21.454086Z",
            "url": "https://files.pythonhosted.org/packages/39/a1/dd8906206428fe49687a5a3e718ab698e3a26994407623302eff7f68938d/pycucim-0.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d3b096c4681b648f2d9e27932bff3e06b823d4940c112564063e27981753d501",
                "md5": "adc37865d7e83918a7e167863c58b56f",
                "sha256": "2be919acfc019e48395a7bab142ed2195cfe317dcce06558df31bf86132c8299"
            },
            "downloads": -1,
            "filename": "pycucim-0.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "adc37865d7e83918a7e167863c58b56f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 3927,
            "upload_time": "2024-11-06T06:17:22",
            "upload_time_iso_8601": "2024-11-06T06:17:22.940967Z",
            "url": "https://files.pythonhosted.org/packages/d3/b0/96c4681b648f2d9e27932bff3e06b823d4940c112564063e27981753d501/pycucim-0.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 06:17:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pycucim"
}
        
Elapsed time: 0.47352s