pydantic-ast


Namepydantic-ast JSON
Version 0.2.0 PyPI version JSON
download
home_page
SummaryPydantic models covering Python AST types
upload_time2023-09-19 20:58:57
maintainer
docs_urlNone
author
requires_python>=3.10
licenseMIT
keywords pydantic serialization deserialization parsing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Pydantic AST

Pydantic models covering Python AST types.

[![PyPI](https://img.shields.io/pypi/v/pydantic-ast?logo=python&logoColor=%23cccccc)](https://pypi.org/project/pydantic-ast)
[![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm.fming.dev)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/lmmx/pydantic_ast/master.svg)](https://results.pre-commit.ci/latest/github/lmmx/pydantic_ast/master)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/pydantic-ast.svg)](https://pypi.org/project/pydantic_ast)

<!-- [![build status](https://github.com/lmmx/pydantic_ast/actions/workflows/master.yml/badge.svg)](https://github.com/lmmx/pydantic_ast/actions/workflows/master.yml) -->

## Installation

```py
pip install pydantic-ast
```

## Usage

Use it as a drop-in replacement to `ast.parse` with a more readable representation.

```py
>>> import ast
>>> import pydantic_ast
>>> source = "x = 1"
>>> ast.parse(source)
<ast.Module object at 0x7fef82567610>
>>> pydantic_ast.parse(source)
pydantic-ast: body=[Assign(targets=[Name(id='x', ctx=Store())], value=Constant(value=1), type_comment=None)] type_ignores=[]
```

Use it on the command line to quickly get an AST of a Python program or a section of one

```sh
echo '"Hello world"' | pydantic-ast 
```
⇣
```
body=[Expr(value=Constant(value='Hello world'))] type_ignores=[]
```

Use it on ASTs you got from elsewhere to make them readable, or to inspect parts of them more easily.
The `AST_to_pydantic` class is a `ast.NodeTransformer` that converts nodes in the AST to
`pydantic_ast` model types when the tree nodes are visited.

```py
>>> from pydantic_ast import AST_to_pydantic
>>> source = "123 + 345 == expected"
>>> my_mystery_ast = ast.parse(source)
>>> ast_model = AST_to_pydantic().visit(my_mystery_ast)
>>> ast_model
body=[Expr(value=Compare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()], comparators=[Name(id='expected', ctx=Load())]))] type_ignores=[]
>>> ast_model.body
[Expr(value=Compare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()], comparators=[Name(id='expected', ctx=Load())]))]
```

It's simply much easier to drill down into a tree when you can see the fields in a repr.

```py
>>> ast_model.body[0].value
Compare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()],
comparators=[Name(id='expected', ctx=Load())])
>>> ast_model.body[0].value.left
BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345))
>>> ast_model.body[0].value.left.left
Constant(value=123)
>>> ast_model.body[0].value.left.left.value
123
```

## Development

- To set up pre-commit hooks (to keep the CI bot happy) run `pre-commit install-hooks` so all git
  commits trigger the pre-commit checks. I use [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/).
  This runs `black`, `flake8`, `autopep8`, `pyupgrade`, etc.

- To set up a dev env, I first create a new conda environment and use it in PDM with `which python > .pdm-python`.
  To use `virtualenv` environment instead of conda, skip that. Run `pdm install` and a `.venv` will be created if no
  Python binary path is found in `.pdm-python`.

- To run tests, run `pdm run python -m pytest` and the PDM environment will be used to run the test suite.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pydantic-ast",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "pydantic serialization deserialization parsing",
    "author": "",
    "author_email": "Louis Maddox <louismmx@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d0/86/51134dd2b12e98ffe3cf889fcf6634835878fdbe4a427d73634e77fb89b7/pydantic_ast-0.2.0.tar.gz",
    "platform": null,
    "description": "# Pydantic AST\n\nPydantic models covering Python AST types.\n\n[![PyPI](https://img.shields.io/pypi/v/pydantic-ast?logo=python&logoColor=%23cccccc)](https://pypi.org/project/pydantic-ast)\n[![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm.fming.dev)\n[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/lmmx/pydantic_ast/master.svg)](https://results.pre-commit.ci/latest/github/lmmx/pydantic_ast/master)\n[![Supported Python versions](https://img.shields.io/pypi/pyversions/pydantic-ast.svg)](https://pypi.org/project/pydantic_ast)\n\n<!-- [![build status](https://github.com/lmmx/pydantic_ast/actions/workflows/master.yml/badge.svg)](https://github.com/lmmx/pydantic_ast/actions/workflows/master.yml) -->\n\n## Installation\n\n```py\npip install pydantic-ast\n```\n\n## Usage\n\nUse it as a drop-in replacement to `ast.parse` with a more readable representation.\n\n```py\n>>> import ast\n>>> import pydantic_ast\n>>> source = \"x = 1\"\n>>> ast.parse(source)\n<ast.Module object at 0x7fef82567610>\n>>> pydantic_ast.parse(source)\npydantic-ast: body=[Assign(targets=[Name(id='x', ctx=Store())], value=Constant(value=1), type_comment=None)] type_ignores=[]\n```\n\nUse it on the command line to quickly get an AST of a Python program or a section of one\n\n```sh\necho '\"Hello world\"' | pydantic-ast \n```\n\u21e3\n```\nbody=[Expr(value=Constant(value='Hello world'))] type_ignores=[]\n```\n\nUse it on ASTs you got from elsewhere to make them readable, or to inspect parts of them more easily.\nThe `AST_to_pydantic` class is a `ast.NodeTransformer` that converts nodes in the AST to\n`pydantic_ast` model types when the tree nodes are visited.\n\n```py\n>>> from pydantic_ast import AST_to_pydantic\n>>> source = \"123 + 345 == expected\"\n>>> my_mystery_ast = ast.parse(source)\n>>> ast_model = AST_to_pydantic().visit(my_mystery_ast)\n>>> ast_model\nbody=[Expr(value=Compare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()], comparators=[Name(id='expected', ctx=Load())]))] type_ignores=[]\n>>> ast_model.body\n[Expr(value=Compare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()], comparators=[Name(id='expected', ctx=Load())]))]\n```\n\nIt's simply much easier to drill down into a tree when you can see the fields in a repr.\n\n```py\n>>> ast_model.body[0].value\nCompare(left=BinOp(left=Constant(value=123), op=Add(), right=Constant(value=345)), ops=[Eq()],\ncomparators=[Name(id='expected', ctx=Load())])\n>>> ast_model.body[0].value.left\nBinOp(left=Constant(value=123), op=Add(), right=Constant(value=345))\n>>> ast_model.body[0].value.left.left\nConstant(value=123)\n>>> ast_model.body[0].value.left.left.value\n123\n```\n\n## Development\n\n- To set up pre-commit hooks (to keep the CI bot happy) run `pre-commit install-hooks` so all git\n  commits trigger the pre-commit checks. I use [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/).\n  This runs `black`, `flake8`, `autopep8`, `pyupgrade`, etc.\n\n- To set up a dev env, I first create a new conda environment and use it in PDM with `which python > .pdm-python`.\n  To use `virtualenv` environment instead of conda, skip that. Run `pdm install` and a `.venv` will be created if no\n  Python binary path is found in `.pdm-python`.\n\n- To run tests, run `pdm run python -m pytest` and the PDM environment will be used to run the test suite.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Pydantic models covering Python AST types",
    "version": "0.2.0",
    "project_urls": null,
    "split_keywords": [
        "pydantic",
        "serialization",
        "deserialization",
        "parsing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f29b437d204376122fcc560264f976e17a788209be0d35bb715abae7ad2e882e",
                "md5": "2adaf1497f753faa98e9813302a80539",
                "sha256": "e035987c0c564d80d13ed284fcf7a84f2468fa59b20bec68ff90caa9e6cc77e8"
            },
            "downloads": -1,
            "filename": "pydantic_ast-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2adaf1497f753faa98e9813302a80539",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 15158,
            "upload_time": "2023-09-19T20:58:55",
            "upload_time_iso_8601": "2023-09-19T20:58:55.793988Z",
            "url": "https://files.pythonhosted.org/packages/f2/9b/437d204376122fcc560264f976e17a788209be0d35bb715abae7ad2e882e/pydantic_ast-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d08651134dd2b12e98ffe3cf889fcf6634835878fdbe4a427d73634e77fb89b7",
                "md5": "654732ec6c83ea91bc73560d31818a14",
                "sha256": "5b113de7a11f81bf9bb0cdcb2f0ab230684c246d34471a10d1e8c734f2f1c5e7"
            },
            "downloads": -1,
            "filename": "pydantic_ast-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "654732ec6c83ea91bc73560d31818a14",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 10866,
            "upload_time": "2023-09-19T20:58:57",
            "upload_time_iso_8601": "2023-09-19T20:58:57.226422Z",
            "url": "https://files.pythonhosted.org/packages/d0/86/51134dd2b12e98ffe3cf889fcf6634835878fdbe4a427d73634e77fb89b7/pydantic_ast-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-19 20:58:57",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pydantic-ast"
}
        
Elapsed time: 1.98502s