pydantic-db


Namepydantic-db JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummarySQL library agnostic data model framework
upload_time2025-07-30 14:43:13
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords agnostic database model pydantic
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pydantic-db aims to be a database framework agnostic modeling library.
Providing functionality to convert database result object(s) into pydantic
model(s). The aim is not to provide an ORM, but to target users who prefer raw
sql interactions over obfuscated ORM object built queries layers.

For those who prefer libraries like pypika to build their queries, this library
can still provide a nice layer between raw query results and database models.

So long as the database library you are using returns result objects that can
be converted to a dictionary, pydantic-db will ineract cleanly with your
results. See unittests for examples with asyncpg, mysql-connector-python,
psycopg2 and sqlite3.

# Usage

All examples assumes the existence of underlying tables and data, they are not
intended to run as is.

## from_result

To convert a single result object into a model, use `Model.from_result`.

```python
import sqlite3

from pydantic_db import Model


class User(Model):
    id: int
    name: str


db = sqlite3.connect(":memory:")
db.row_factory = sqlite3.Row

stmt = "SELECT * FROM my_user LIMIT 1"
cursor.execute(stmt)
r = cursor.fetchone()

user = User.from_result(r)
```

## from_results

To convert a list of result objects into models, use `Model.from_results`.

```python
import sqlite3

from pydantic_db import Model


class User(Model):
    id: int
    name: str


db = sqlite3.connect(":memory:")
db.row_factory = sqlite3.Row

stmt = "SELECT * FROM my_user"
cursor.execute(stmt)
results = cursor.fetchall()

users = User.from_results(results)
```

## Nested models

For more complicated queries returning a nested object, models can be nested. To
parse them automatically prefix query fields with `name__` format prefixes.

Say we have a Vehicle table with a reference to an owner (User).

```python
import sqlite3

from pydantic_db import Model


class User(Model):
    id: int
    name: str


class Vehicle(Model):
    id: int
    name: str
    owner: User

db = sqlite3.connect(":memory:")
db.row_factory = sqlite3.Row

stmt = """
SELECT
    v.id,
    v.name,
    u.id AS owner__id,
    u.name AS owner__name
FROM my_vehicle v
JOIN my_user u ON v.owner_id = u.id
"""
cursor.execute(stmt)
results = cursor.fetchall()

vehicles = Vehicle.from_results(results)
```

### Optional nested models

When a nested model is optional i.e. `user: User | None` the library will check
if there is an `id` field by default, and if that field is empty (None), it
will nullify that field.

If your nested model contains a differently named primary key or some other
field that can be relied on to detect that a query has not successfully joined,
and so the nested model should be None. Override the `_skip_prefix_fields` class var.


```python
class User(Model):
    primary_key: int
    name: str


class Vehicle(Model):
    _skip_prefix_fields = {"owner": "primary_key"}

    id: int
    name: str
    owner: User | None
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pydantic-db",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Daniel Edgecombe <daniel@nrwl.co>",
    "keywords": "agnostic, database, model, pydantic",
    "author": null,
    "author_email": "Daniel Edgecombe <daniel@nrwl.co>",
    "download_url": "https://files.pythonhosted.org/packages/2d/e9/591b5cfaf672e1716b0a0d2ae5d6adea06ae17bb67ebfda8259dc0bdba4a/pydantic_db-0.2.1.tar.gz",
    "platform": null,
    "description": "pydantic-db aims to be a database framework agnostic modeling library.\nProviding functionality to convert database result object(s) into pydantic\nmodel(s). The aim is not to provide an ORM, but to target users who prefer raw\nsql interactions over obfuscated ORM object built queries layers.\n\nFor those who prefer libraries like pypika to build their queries, this library\ncan still provide a nice layer between raw query results and database models.\n\nSo long as the database library you are using returns result objects that can\nbe converted to a dictionary, pydantic-db will ineract cleanly with your\nresults. See unittests for examples with asyncpg, mysql-connector-python,\npsycopg2 and sqlite3.\n\n# Usage\n\nAll examples assumes the existence of underlying tables and data, they are not\nintended to run as is.\n\n## from_result\n\nTo convert a single result object into a model, use `Model.from_result`.\n\n```python\nimport sqlite3\n\nfrom pydantic_db import Model\n\n\nclass User(Model):\n    id: int\n    name: str\n\n\ndb = sqlite3.connect(\":memory:\")\ndb.row_factory = sqlite3.Row\n\nstmt = \"SELECT * FROM my_user LIMIT 1\"\ncursor.execute(stmt)\nr = cursor.fetchone()\n\nuser = User.from_result(r)\n```\n\n## from_results\n\nTo convert a list of result objects into models, use `Model.from_results`.\n\n```python\nimport sqlite3\n\nfrom pydantic_db import Model\n\n\nclass User(Model):\n    id: int\n    name: str\n\n\ndb = sqlite3.connect(\":memory:\")\ndb.row_factory = sqlite3.Row\n\nstmt = \"SELECT * FROM my_user\"\ncursor.execute(stmt)\nresults = cursor.fetchall()\n\nusers = User.from_results(results)\n```\n\n## Nested models\n\nFor more complicated queries returning a nested object, models can be nested. To\nparse them automatically prefix query fields with `name__` format prefixes.\n\nSay we have a Vehicle table with a reference to an owner (User).\n\n```python\nimport sqlite3\n\nfrom pydantic_db import Model\n\n\nclass User(Model):\n    id: int\n    name: str\n\n\nclass Vehicle(Model):\n    id: int\n    name: str\n    owner: User\n\ndb = sqlite3.connect(\":memory:\")\ndb.row_factory = sqlite3.Row\n\nstmt = \"\"\"\nSELECT\n    v.id,\n    v.name,\n    u.id AS owner__id,\n    u.name AS owner__name\nFROM my_vehicle v\nJOIN my_user u ON v.owner_id = u.id\n\"\"\"\ncursor.execute(stmt)\nresults = cursor.fetchall()\n\nvehicles = Vehicle.from_results(results)\n```\n\n### Optional nested models\n\nWhen a nested model is optional i.e. `user: User | None` the library will check\nif there is an `id` field by default, and if that field is empty (None), it\nwill nullify that field.\n\nIf your nested model contains a differently named primary key or some other\nfield that can be relied on to detect that a query has not successfully joined,\nand so the nested model should be None. Override the `_skip_prefix_fields` class var.\n\n\n```python\nclass User(Model):\n    primary_key: int\n    name: str\n\n\nclass Vehicle(Model):\n    _skip_prefix_fields = {\"owner\": \"primary_key\"}\n\n    id: int\n    name: str\n    owner: User | None\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SQL library agnostic data model framework",
    "version": "0.2.1",
    "project_urls": {
        "homepage": "https://github.com/NRWLDev/pydantic-db"
    },
    "split_keywords": [
        "agnostic",
        " database",
        " model",
        " pydantic"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3b97ee761a8f1810c4aadef72808844813f37c7c01f02c985b25e9e37cd4eddb",
                "md5": "e98724e525b4e2773d2ebc512e0314d0",
                "sha256": "787ea593dc50ba6289c6094d54e62507a3f49b47e1c756aef15a20005c8f1c05"
            },
            "downloads": -1,
            "filename": "pydantic_db-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e98724e525b4e2773d2ebc512e0314d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 6141,
            "upload_time": "2025-07-30T14:43:12",
            "upload_time_iso_8601": "2025-07-30T14:43:12.729382Z",
            "url": "https://files.pythonhosted.org/packages/3b/97/ee761a8f1810c4aadef72808844813f37c7c01f02c985b25e9e37cd4eddb/pydantic_db-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2de9591b5cfaf672e1716b0a0d2ae5d6adea06ae17bb67ebfda8259dc0bdba4a",
                "md5": "8cd1aa9d54060112924568855751f7d0",
                "sha256": "4e260f6057ce30083ab5d4ee1158445362b2d320a0f278f231d28b1f611fe466"
            },
            "downloads": -1,
            "filename": "pydantic_db-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8cd1aa9d54060112924568855751f7d0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 56709,
            "upload_time": "2025-07-30T14:43:13",
            "upload_time_iso_8601": "2025-07-30T14:43:13.557963Z",
            "url": "https://files.pythonhosted.org/packages/2d/e9/591b5cfaf672e1716b0a0d2ae5d6adea06ae17bb67ebfda8259dc0bdba4a/pydantic_db-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 14:43:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NRWLDev",
    "github_project": "pydantic-db",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pydantic-db"
}
        
Elapsed time: 0.66274s