pydantic-to-elastic


Namepydantic-to-elastic JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/malinkinsa/pydantic-to-elastic
SummaryA simple CLI utility for converting Pydantic models to Elasticsearch mappings
upload_time2024-11-17 21:08:24
maintainerNone
docs_urlNone
authorSergey Malinkin
requires_pythonNone
licenseMIT
keywords pydantic elasticsearch mappings es elastic
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pydantic-to-elastic

A simple CLI utility for converting Pydantic models to Elasticsearch mappings.

### Installation

#### From source
```bash
git clone https://github.com/malinkinsa/pydantic-to-elastic.git && cd pydantic-to-elastic
pip install .
```

### CLI options
| Prop            | Description                                                                                                                        | Required | Default value |
|:----------------|:-----------------------------------------------------------------------------------------------------------------------------------|:---------|:--------------|
| --input         | Path to the file containing Pydantic models.                                                                                       | True     |               |
| --output        | Output type of result. Possible values: "console" or "file".                                                                       | False    | console       |
| --output_path   | Path and filename to save the output file (required if --output is set to 'file').                                                 | False    |               |
| --output_format | Output format for JSON data. Use 'json' for compact single-line JSON or 'pretty' for pretty-printed JSON with 4-space indentation. | False    | json          |
| --submodel_type | Specifies the submodel type. Possible values: "nested" or "object"                                                                 | False    | nested        |
| --text_fields   | List of fields that must be of type 'text'. Can be specified multiple times.                                                       | False    |               |

### Usage
For example, you have a model `user_models.py`
```python
from pydantic import BaseModel
from typing import List

class Address(BaseModel):
    street: str
    city: str
    zip_code: str

class User(BaseModel):
    name: str
    age: int
    address: Address
    hobbies: List[str]
```

Execute the command for converting these models into mapping json:
```bash
pydantic2es --input ./user_models.py --output_format pretty
```

And you will obtain the following result:
```json
{
    "mappings": {
        "properties": {
            "name": {
                "type": "keyword"
            },
            "age": {
                "type": "integer"
            },
            "address": {
                "type": "nested",
                "properties": {
                    "street": {
                        "type": "keyword"
                    },
                    "city": {
                        "type": "keyword"
                    },
                    "zip_code": {
                        "type": "keyword"
                    }
                }
            },
            "hobbies": {
                "type": "keyword"
            }
        }
    }
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/malinkinsa/pydantic-to-elastic",
    "name": "pydantic-to-elastic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "pydantic elasticsearch mappings es, elastic",
    "author": "Sergey Malinkin",
    "author_email": "malinkinsa@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f4/9b/47100bdc56256effee89f215adcaf134cbf713bd2dac32191b25ccf12095/pydantic_to_elastic-0.0.1.tar.gz",
    "platform": null,
    "description": "# pydantic-to-elastic\n\nA simple CLI utility for converting Pydantic models to Elasticsearch mappings.\n\n### Installation\n\n#### From source\n```bash\ngit clone https://github.com/malinkinsa/pydantic-to-elastic.git && cd pydantic-to-elastic\npip install .\n```\n\n### CLI options\n| Prop            | Description                                                                                                                        | Required | Default value |\n|:----------------|:-----------------------------------------------------------------------------------------------------------------------------------|:---------|:--------------|\n| --input         | Path to the file containing Pydantic models.                                                                                       | True     |               |\n| --output        | Output type of result. Possible values: \"console\" or \"file\".                                                                       | False    | console       |\n| --output_path   | Path and filename to save the output file (required if --output is set to 'file').                                                 | False    |               |\n| --output_format | Output format for JSON data. Use 'json' for compact single-line JSON or 'pretty' for pretty-printed JSON with 4-space indentation. | False    | json          |\n| --submodel_type | Specifies the submodel type. Possible values: \"nested\" or \"object\"                                                                 | False    | nested        |\n| --text_fields   | List of fields that must be of type 'text'. Can be specified multiple times.                                                       | False    |               |\n\n### Usage\nFor example, you have a model `user_models.py`\n```python\nfrom pydantic import BaseModel\nfrom typing import List\n\nclass Address(BaseModel):\n    street: str\n    city: str\n    zip_code: str\n\nclass User(BaseModel):\n    name: str\n    age: int\n    address: Address\n    hobbies: List[str]\n```\n\nExecute the command for converting these models into mapping json:\n```bash\npydantic2es --input ./user_models.py --output_format pretty\n```\n\nAnd you will obtain the following result:\n```json\n{\n    \"mappings\": {\n        \"properties\": {\n            \"name\": {\n                \"type\": \"keyword\"\n            },\n            \"age\": {\n                \"type\": \"integer\"\n            },\n            \"address\": {\n                \"type\": \"nested\",\n                \"properties\": {\n                    \"street\": {\n                        \"type\": \"keyword\"\n                    },\n                    \"city\": {\n                        \"type\": \"keyword\"\n                    },\n                    \"zip_code\": {\n                        \"type\": \"keyword\"\n                    }\n                }\n            },\n            \"hobbies\": {\n                \"type\": \"keyword\"\n            }\n        }\n    }\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple CLI utility for converting Pydantic models to Elasticsearch mappings",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/malinkinsa/pydantic-to-elastic"
    },
    "split_keywords": [
        "pydantic elasticsearch mappings es",
        " elastic"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82e79325e991823c5eddc9b20a6b17647ff4fd6df39cf90bb2769231f1677044",
                "md5": "80b90b3087a3adde1f1723fb56a49698",
                "sha256": "58953eabcf6fd72a65cecf30861d29fdcd15cecbcb45d3254d0d780da413816c"
            },
            "downloads": -1,
            "filename": "pydantic_to_elastic-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "80b90b3087a3adde1f1723fb56a49698",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7829,
            "upload_time": "2024-11-17T21:08:22",
            "upload_time_iso_8601": "2024-11-17T21:08:22.636606Z",
            "url": "https://files.pythonhosted.org/packages/82/e7/9325e991823c5eddc9b20a6b17647ff4fd6df39cf90bb2769231f1677044/pydantic_to_elastic-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f49b47100bdc56256effee89f215adcaf134cbf713bd2dac32191b25ccf12095",
                "md5": "3924fa03352016fc6654413c803eb17a",
                "sha256": "a2ace38b25c967f7ca694b61f8add6d0e0c78ac4b11357d45e69853f7e79abe0"
            },
            "downloads": -1,
            "filename": "pydantic_to_elastic-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3924fa03352016fc6654413c803eb17a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6550,
            "upload_time": "2024-11-17T21:08:24",
            "upload_time_iso_8601": "2024-11-17T21:08:24.318204Z",
            "url": "https://files.pythonhosted.org/packages/f4/9b/47100bdc56256effee89f215adcaf134cbf713bd2dac32191b25ccf12095/pydantic_to_elastic-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 21:08:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "malinkinsa",
    "github_project": "pydantic-to-elastic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pydantic-to-elastic"
}
        
Elapsed time: 0.68074s