<h1>Data Analysis CheatSheet (everything you might need )</h1>
<p>
The project include four modules with functions to summarize and analysis dataset in order
to understand properties and relationships.
[Read Documentation](https://tamer-george.github.io/docs/_build/html/index.html)
</p>
<h2>1. DESCRIPTIVE MODULE</h2>
<h3>Answer the question (What Happen?)</h3>
Includes two modules:
- <i>pyeda.py</i><br>
Includes simple EDA functions that might be useful in general cases.<br><br>
- <i>pydatapreprocessing.py</i><br>
Useful Functions for data preprocessing.<br>
For Example:
from descriptive import pyeda
pyeda.visualize_different_plots_of_numeric_col(data_frame, column_name: str)
For Example:
from descriptive import pydatapreprocessing
pydatapreprocessing.standardization_numerical_columns(data, numerical_column: list)
<h2>2. DIAGNOSTIC MODULE</h2>
<h3>Answer the question (Why did it happen?)</h3>
<i>pydiagnostic.py</i><br><br>
Include functions to apply hypothesis testing
For Example:
from diagnostic import pydiagnostic
pydiagnostic.display_test_p_value(p_value: float)
<h2>3. PREDICTIVE MODULE </h2>
<h3>Answer the question (What is likely to Happen?)</h3>
<i>pypredictive.py</i> <br><br>
The module include functions for:
* Regression
* Forcasting
* Classification
* Clustering
For Example:
from predictive import pypredictive
pypredictive.chi_value_plot(data)
<h2>4. PRESCRIPTIVE MODULE</h2>
<h3>Answer the question (What action should we take?)</h3>
<i>pyprescriptive.py</i><br>
Module include functions that might be useful for classification
For Example:
from prescriptive import pyprescriptive
pyprescriptive.visualize_confusion_matrix(actual, predicted)
Raw data
{
"_id": null,
"home_page": "",
"name": "pydataanalysis",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,data science,eda,data preprocessing,data analysis,machine learning",
"author": "Tamer Samara",
"author_email": "tamer.samara@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/78/b9/214967a4e772d55442a0bbdbca2d43c4e63d3de1e1d47be58713abd1d597/pydataanalysis-0.0.4.tar.gz",
"platform": null,
"description": "<h1>Data Analysis CheatSheet (everything you might need )</h1>\r\n<p>\r\nThe project include four modules with functions to summarize and analysis dataset in order \r\nto understand properties and relationships.\r\n\r\n[Read Documentation](https://tamer-george.github.io/docs/_build/html/index.html)\r\n</p>\r\n<h2>1. DESCRIPTIVE MODULE</h2>\r\n<h3>Answer the question (What Happen?)</h3>\r\n\r\nIncludes two modules:\r\n\r\n\r\n- <i>pyeda.py</i><br>\r\nIncludes simple EDA functions that might be useful in general cases.<br><br>\r\n- <i>pydatapreprocessing.py</i><br> \r\nUseful Functions for data preprocessing.<br>\r\n\r\n For Example:\r\n from descriptive import pyeda\r\n pyeda.visualize_different_plots_of_numeric_col(data_frame, column_name: str)\r\n\r\n\r\n For Example:\r\n from descriptive import pydatapreprocessing\r\n pydatapreprocessing.standardization_numerical_columns(data, numerical_column: list)\r\n <h2>2. DIAGNOSTIC MODULE</h2>\r\n <h3>Answer the question (Why did it happen?)</h3>\r\n <i>pydiagnostic.py</i><br><br>\r\n Include functions to apply hypothesis testing \r\n\r\n For Example:\r\n from diagnostic import pydiagnostic\r\n pydiagnostic.display_test_p_value(p_value: float) \r\n\r\n\r\n<h2>3. PREDICTIVE MODULE </h2>\r\n<h3>Answer the question (What is likely to Happen?)</h3>\r\n<i>pypredictive.py</i> <br><br>\r\nThe module include functions for:\r\n* Regression \r\n* Forcasting \r\n* Classification \r\n* Clustering \r\n\r\n\r\n For Example:\r\n from predictive import pypredictive\r\n pypredictive.chi_value_plot(data)\r\n<h2>4. PRESCRIPTIVE MODULE</h2> \r\n<h3>Answer the question (What action should we take?)</h3>\r\n\r\n<i>pyprescriptive.py</i><br>\r\n\r\nModule include functions that might be useful for classification \r\n\r\n For Example:\r\n from prescriptive import pyprescriptive\r\n pyprescriptive.visualize_confusion_matrix(actual, predicted)\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Data Analysis and Visualization Functions",
"version": "0.0.4",
"split_keywords": [
"python",
"data science",
"eda",
"data preprocessing",
"data analysis",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "654c9cbd2ab8ca564eed7106e2a14506f4eba0c144bd27c85d801e3846cd7938",
"md5": "14e5d18933fb77a35f25d60bae668a92",
"sha256": "97c24a6d981019270106432a3e694ac0b8b431b882a8f8bc53bc592d4c4ea87d"
},
"downloads": -1,
"filename": "pydataanalysis-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "14e5d18933fb77a35f25d60bae668a92",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 16235,
"upload_time": "2023-04-13T09:25:52",
"upload_time_iso_8601": "2023-04-13T09:25:52.385103Z",
"url": "https://files.pythonhosted.org/packages/65/4c/9cbd2ab8ca564eed7106e2a14506f4eba0c144bd27c85d801e3846cd7938/pydataanalysis-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "78b9214967a4e772d55442a0bbdbca2d43c4e63d3de1e1d47be58713abd1d597",
"md5": "e5fa79254bbe9a0859720ab224b82e05",
"sha256": "9a2ca272576e99f96cd3dba29168131a4a97cf57cda3d982aa5a4c187c50a1c0"
},
"downloads": -1,
"filename": "pydataanalysis-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "e5fa79254bbe9a0859720ab224b82e05",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 15471,
"upload_time": "2023-04-13T09:25:54",
"upload_time_iso_8601": "2023-04-13T09:25:54.700632Z",
"url": "https://files.pythonhosted.org/packages/78/b9/214967a4e772d55442a0bbdbca2d43c4e63d3de1e1d47be58713abd1d597/pydataanalysis-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-13 09:25:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "pydataanalysis"
}