<meta name = "Keywords" content = "datascience, eda, dataanalysis, data visualization, machinelearning,
data preprocessing, diagnostic analysis, descriptive analysis">
<h1>Data Analysis CheatSheet (everything you might need )</h1>
<p>
The project include modules with functions to summarize and analysis dataset in order
to understand properties and relationships.
</p>
<h2>DESCRIPTIVE MODULE</h2>
<h3>Answer the question (What Happen?)</h3>
Includes two modules:
- pyeda.py<br>
Includes simple eda cheatsheet functions that might be useful in general cases.
- pydatapreprocessing<br> Some functions for data preprocessing that might be useful.
<h2>DIAGNOSTIC MODULE</h2>
<h3>Answer the question (Why did it happen?)</h3>
Module with several statistical analysis functions.
<h2>PREDICTIVE MODULE </h2>
<h3>Answer the question (What is likely to Happen?)</h3>
<h2>PRESCRIPTIVE MODULE</h2>
<h3>Answer the question (What action should we take?)</h3>
Raw data
{
"_id": null,
"home_page": "",
"name": "pydatascience",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,data science,eda,data preprocessing,data analysis,machine learning",
"author": "Tamer Samara",
"author_email": "<tamer.samara@gmail.com>",
"download_url": "",
"platform": null,
"description": "<meta name = \"Keywords\" content = \"datascience, eda, dataanalysis, data visualization, machinelearning, \r\ndata preprocessing, diagnostic analysis, descriptive analysis\"> \r\n\r\n<h1>Data Analysis CheatSheet (everything you might need )</h1>\r\n<p>\r\nThe project include modules with functions to summarize and analysis dataset in order \r\nto understand properties and relationships.\r\n</p>\r\n<h2>DESCRIPTIVE MODULE</h2>\r\n<h3>Answer the question (What Happen?)</h3>\r\n\r\nIncludes two modules:\r\n- pyeda.py<br>\r\nIncludes simple eda cheatsheet functions that might be useful in general cases.\r\n- pydatapreprocessing<br> Some functions for data preprocessing that might be useful.\r\n\r\n\r\n\r\n<h2>DIAGNOSTIC MODULE</h2>\r\n<h3>Answer the question (Why did it happen?)</h3>\r\n\r\nModule with several statistical analysis functions.\r\n\r\n\r\n\r\n<h2>PREDICTIVE MODULE </h2>\r\n<h3>Answer the question (What is likely to Happen?)</h3>\r\n\r\n\r\n<h2>PRESCRIPTIVE MODULE</h2> \r\n<h3>Answer the question (What action should we take?)</h3>\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Data Science Functions",
"version": "0.0.3",
"split_keywords": [
"python",
"data science",
"eda",
"data preprocessing",
"data analysis",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d6549a326e777a14e5b6ec235f05d37c6e13beb04a4df0b3b5573308723da5ef",
"md5": "0b617a4af8372dccb2ef6965b5e80feb",
"sha256": "dcbd6c96727480510055c2393efc37a112d6e36e4cb2c35dc7f88d0970c86b47"
},
"downloads": -1,
"filename": "pydatascience-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0b617a4af8372dccb2ef6965b5e80feb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2559,
"upload_time": "2023-03-22T07:36:22",
"upload_time_iso_8601": "2023-03-22T07:36:22.372923Z",
"url": "https://files.pythonhosted.org/packages/d6/54/9a326e777a14e5b6ec235f05d37c6e13beb04a4df0b3b5573308723da5ef/pydatascience-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-22 07:36:22",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "pydatascience"
}