<h1>Data Visualization CheatSheet (everything you might need )</h1>
<p>
The project include module with functions to summarize and analysis dataset in order
to understand properties and relationships.
[ReadME](https://tamer-george.github.io/docs/_build/html/index.html)
</p>
<h2> DESCRIPTIVE MODULE</h2>
<h3>Answer the question (What Happen?)</h3>
Includes one module:
- <i>pyeda.py</i><br>
Includes simple data visualization functions that might be useful in general cases.<br><br>
Example:
import descriptive.pyeda as eda
data = eda.import_dataset("data.csv")
eda.visualize_distribution_of_numeric_col(data, "column_name")
Raw data
{
"_id": null,
"home_page": "",
"name": "pydatavisualization",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,data+science,eda,data+preprocessing,data+analysis,machine+learning",
"author": "Tamer Samara",
"author_email": "tamer.samara@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/eb/dc/88ccb071881220507b8d7fce8c8bb4c435cc7366b63228bb066aebab3cbc/pydatavisualization-0.0.4.tar.gz",
"platform": null,
"description": "<h1>Data Visualization CheatSheet (everything you might need )</h1>\r\n<p>\r\nThe project include module with functions to summarize and analysis dataset in order \r\nto understand properties and relationships.\r\n\r\n[ReadME](https://tamer-george.github.io/docs/_build/html/index.html)\r\n</p>\r\n<h2> DESCRIPTIVE MODULE</h2>\r\n<h3>Answer the question (What Happen?)</h3>\r\n\r\nIncludes one module:\r\n\r\n \r\n - <i>pyeda.py</i><br>\r\nIncludes simple data visualization functions that might be useful in general cases.<br><br>\r\n \r\n\r\n Example:\r\n \r\n import descriptive.pyeda as eda \r\n\r\n data = eda.import_dataset(\"data.csv\") \r\n eda.visualize_distribution_of_numeric_col(data, \"column_name\")\r\n \r\n \r\n \r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Data Visualization Functions",
"version": "0.0.4",
"project_urls": null,
"split_keywords": [
"python",
"data+science",
"eda",
"data+preprocessing",
"data+analysis",
"machine+learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7ba944347c02680e28a073153473f3a76005bfd0e8a0057b63a9b35c96f11e41",
"md5": "cd8bbc8ea5120d1bfdff0064da82f837",
"sha256": "2f884e386822f7d20468f097badd1d1092634ce0813c1eed167b638721e826b5"
},
"downloads": -1,
"filename": "pydatavisualization-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cd8bbc8ea5120d1bfdff0064da82f837",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 10831,
"upload_time": "2023-07-03T12:22:01",
"upload_time_iso_8601": "2023-07-03T12:22:01.630863Z",
"url": "https://files.pythonhosted.org/packages/7b/a9/44347c02680e28a073153473f3a76005bfd0e8a0057b63a9b35c96f11e41/pydatavisualization-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ebdc88ccb071881220507b8d7fce8c8bb4c435cc7366b63228bb066aebab3cbc",
"md5": "5056bd8271986204f3ccf02c7216a653",
"sha256": "786efa7146ce53021501655ae90db35757756ba477d9ed49bc14828dc66dcdad"
},
"downloads": -1,
"filename": "pydatavisualization-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "5056bd8271986204f3ccf02c7216a653",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 11250,
"upload_time": "2023-07-03T12:22:03",
"upload_time_iso_8601": "2023-07-03T12:22:03.385513Z",
"url": "https://files.pythonhosted.org/packages/eb/dc/88ccb071881220507b8d7fce8c8bb4c435cc7366b63228bb066aebab3cbc/pydatavisualization-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-03 12:22:03",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pydatavisualization"
}