pydataviz-cleaner


Namepydataviz-cleaner JSON
Version 0.0.3 PyPI version JSON
download
home_pageNone
SummaryA lightweight Python package to clean messy data for visualization.
upload_time2025-09-06 13:50:12
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pydataviz_cleaner

A lightweight Python package to clean messy data for visualization and analysis.

## ✨ Features
- Drop missing values easily
- Remove duplicate rows
- Standardize date formats
- Simple, chainable API for quick data cleaning

## 📦 Installation
```bash
pip install pydataviz-cleaner
```

## 🚀 Usage

```
import pandas as pd
from pydataviz_cleaner.cleaner import DataCleaner

# Example DataFrame
df = pd.DataFrame({
    "name": ["Alice", "Bob", "Bob", None],
    "date": ["2023-01-01", "01/02/2023", "2023-01-02", "invalid"]
})

# Clean the data
cleaner = DataCleaner(df)
cleaned_df = (
    cleaner
    .drop_missing()
    .drop_duplicates()
    .standardize_dates("date")
    .get_df()
)

print(cleaned_df)
```

## 🛠️ Development

- Clone the repo
- Create a virtual environment
- Install dependencies with pip install -e .

## 📜 License

MIT License

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pydataviz-cleaner",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Saifur Rahman <saifurnstuiit223344@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a8/f8/b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2/pydataviz_cleaner-0.0.3.tar.gz",
    "platform": null,
    "description": "# pydataviz_cleaner\r\n\r\nA lightweight Python package to clean messy data for visualization and analysis.\r\n\r\n## \u2728 Features\r\n- Drop missing values easily\r\n- Remove duplicate rows\r\n- Standardize date formats\r\n- Simple, chainable API for quick data cleaning\r\n\r\n## \ud83d\udce6 Installation\r\n```bash\r\npip install pydataviz-cleaner\r\n```\r\n\r\n## \ud83d\ude80 Usage\r\n\r\n```\r\nimport pandas as pd\r\nfrom pydataviz_cleaner.cleaner import DataCleaner\r\n\r\n# Example DataFrame\r\ndf = pd.DataFrame({\r\n    \"name\": [\"Alice\", \"Bob\", \"Bob\", None],\r\n    \"date\": [\"2023-01-01\", \"01/02/2023\", \"2023-01-02\", \"invalid\"]\r\n})\r\n\r\n# Clean the data\r\ncleaner = DataCleaner(df)\r\ncleaned_df = (\r\n    cleaner\r\n    .drop_missing()\r\n    .drop_duplicates()\r\n    .standardize_dates(\"date\")\r\n    .get_df()\r\n)\r\n\r\nprint(cleaned_df)\r\n```\r\n\r\n## \ud83d\udee0\ufe0f Development\r\n\r\n- Clone the repo\r\n- Create a virtual environment\r\n- Install dependencies with pip install -e .\r\n\r\n## \ud83d\udcdc License\r\n\r\nMIT License\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A lightweight Python package to clean messy data for visualization.",
    "version": "0.0.3",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e2e4b312c4f5092e3b5e65f91d139c60813adfe372aecdae2d3f798b7e9d16a4",
                "md5": "de3a3efccc559ac7fc1a001d02c030c5",
                "sha256": "1906aefb4f331cd1143af0c13b13a8e30444ac9d90ae3ae1f043d63e9c0773ef"
            },
            "downloads": -1,
            "filename": "pydataviz_cleaner-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "de3a3efccc559ac7fc1a001d02c030c5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 2671,
            "upload_time": "2025-09-06T13:50:11",
            "upload_time_iso_8601": "2025-09-06T13:50:11.448229Z",
            "url": "https://files.pythonhosted.org/packages/e2/e4/b312c4f5092e3b5e65f91d139c60813adfe372aecdae2d3f798b7e9d16a4/pydataviz_cleaner-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a8f8b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2",
                "md5": "d757ed9127d2845f5dd3c15f66470701",
                "sha256": "1c09e0087d88add8d862e4d7b5a8149e9d5e0829cf16ba796d339b3495fd0b5d"
            },
            "downloads": -1,
            "filename": "pydataviz_cleaner-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d757ed9127d2845f5dd3c15f66470701",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 2149,
            "upload_time": "2025-09-06T13:50:12",
            "upload_time_iso_8601": "2025-09-06T13:50:12.513070Z",
            "url": "https://files.pythonhosted.org/packages/a8/f8/b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2/pydataviz_cleaner-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-06 13:50:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pydataviz-cleaner"
}
        
Elapsed time: 2.82803s