Name | pydataviz-cleaner JSON |
Version |
0.0.3
JSON |
| download |
home_page | None |
Summary | A lightweight Python package to clean messy data for visualization. |
upload_time | 2025-09-06 13:50:12 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# pydataviz_cleaner
A lightweight Python package to clean messy data for visualization and analysis.
## ✨ Features
- Drop missing values easily
- Remove duplicate rows
- Standardize date formats
- Simple, chainable API for quick data cleaning
## 📦 Installation
```bash
pip install pydataviz-cleaner
```
## 🚀 Usage
```
import pandas as pd
from pydataviz_cleaner.cleaner import DataCleaner
# Example DataFrame
df = pd.DataFrame({
"name": ["Alice", "Bob", "Bob", None],
"date": ["2023-01-01", "01/02/2023", "2023-01-02", "invalid"]
})
# Clean the data
cleaner = DataCleaner(df)
cleaned_df = (
cleaner
.drop_missing()
.drop_duplicates()
.standardize_dates("date")
.get_df()
)
print(cleaned_df)
```
## 🛠️ Development
- Clone the repo
- Create a virtual environment
- Install dependencies with pip install -e .
## 📜 License
MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "pydataviz-cleaner",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Saifur Rahman <saifurnstuiit223344@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/a8/f8/b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2/pydataviz_cleaner-0.0.3.tar.gz",
"platform": null,
"description": "# pydataviz_cleaner\r\n\r\nA lightweight Python package to clean messy data for visualization and analysis.\r\n\r\n## \u2728 Features\r\n- Drop missing values easily\r\n- Remove duplicate rows\r\n- Standardize date formats\r\n- Simple, chainable API for quick data cleaning\r\n\r\n## \ud83d\udce6 Installation\r\n```bash\r\npip install pydataviz-cleaner\r\n```\r\n\r\n## \ud83d\ude80 Usage\r\n\r\n```\r\nimport pandas as pd\r\nfrom pydataviz_cleaner.cleaner import DataCleaner\r\n\r\n# Example DataFrame\r\ndf = pd.DataFrame({\r\n \"name\": [\"Alice\", \"Bob\", \"Bob\", None],\r\n \"date\": [\"2023-01-01\", \"01/02/2023\", \"2023-01-02\", \"invalid\"]\r\n})\r\n\r\n# Clean the data\r\ncleaner = DataCleaner(df)\r\ncleaned_df = (\r\n cleaner\r\n .drop_missing()\r\n .drop_duplicates()\r\n .standardize_dates(\"date\")\r\n .get_df()\r\n)\r\n\r\nprint(cleaned_df)\r\n```\r\n\r\n## \ud83d\udee0\ufe0f Development\r\n\r\n- Clone the repo\r\n- Create a virtual environment\r\n- Install dependencies with pip install -e .\r\n\r\n## \ud83d\udcdc License\r\n\r\nMIT License\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A lightweight Python package to clean messy data for visualization.",
"version": "0.0.3",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e2e4b312c4f5092e3b5e65f91d139c60813adfe372aecdae2d3f798b7e9d16a4",
"md5": "de3a3efccc559ac7fc1a001d02c030c5",
"sha256": "1906aefb4f331cd1143af0c13b13a8e30444ac9d90ae3ae1f043d63e9c0773ef"
},
"downloads": -1,
"filename": "pydataviz_cleaner-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "de3a3efccc559ac7fc1a001d02c030c5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 2671,
"upload_time": "2025-09-06T13:50:11",
"upload_time_iso_8601": "2025-09-06T13:50:11.448229Z",
"url": "https://files.pythonhosted.org/packages/e2/e4/b312c4f5092e3b5e65f91d139c60813adfe372aecdae2d3f798b7e9d16a4/pydataviz_cleaner-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8f8b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2",
"md5": "d757ed9127d2845f5dd3c15f66470701",
"sha256": "1c09e0087d88add8d862e4d7b5a8149e9d5e0829cf16ba796d339b3495fd0b5d"
},
"downloads": -1,
"filename": "pydataviz_cleaner-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "d757ed9127d2845f5dd3c15f66470701",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 2149,
"upload_time": "2025-09-06T13:50:12",
"upload_time_iso_8601": "2025-09-06T13:50:12.513070Z",
"url": "https://files.pythonhosted.org/packages/a8/f8/b69457549eea5d4489ed303a7db0e363137ee3caa665730abcdb194953e2/pydataviz_cleaner-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-06 13:50:12",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pydataviz-cleaner"
}