# PyDecomposer
PyDecomposer is a Python package for advanced signal decomposition using Variational Mode Decomposition (VMD) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN).
## Features
- Decompose signals using VMD and CEEMDAN
- Automatically adjust the number of Intrinsic Mode Functions (IMFs)
- Classify IMFs into high-frequency and low-frequency components
- Visualize decomposed signals and IMFs
## Installation
You can install PyComposer using pip:
```bash
pip install pydecomposer
```
## Usage
Here's a quick example of how to use PyComposer:
```python
import numpy as np
from pydecomposer import DecompositionModel
# Generate a sample signal
t = np.linspace(0, 1, 1000)
signal = np.sin(2*np.pi*10*t) + 0.5*np.sin(2*np.pi*50*t)
# Create a DecompositionModel instance
model = DecompositionModel()
# Execute the decomposition
model.run(signal)
# Get the decomposed signals
high_freq, medium_freq, low_freq, residual = model.get_signals()
```
## GitHub
For more detailed information please visit the GitHub Repo [full documentation](https://github.com/gems-yc4923/PyDecomposer).
## Dependencies
- numpy
- matplotlib
- vmdpy
- EntropyHub
- PyEMD
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is licensed under the Apache License, Version 2.0 - see the [LICENSE](LICENSE) file for details.
## Contact
For any issues or questions, please contact <*<yc2349@ac.ic.uk>*.
Raw data
{
"_id": null,
"home_page": "https://github.com/gems-yc4923/PyDecomposer",
"name": "pydecomposer",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "signal decomposition vmd ceemdan",
"author": "Yassine Charouif",
"author_email": "yc4923@ic.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/a0/09/20e558ad1a1707dac46427c4fc775400cce259f3657eaecc3c5c83a1cd8d/pydecomposer-1.1.5.tar.gz",
"platform": null,
"description": "# PyDecomposer\n\nPyDecomposer is a Python package for advanced signal decomposition using Variational Mode Decomposition (VMD) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN).\n\n## Features\n\n- Decompose signals using VMD and CEEMDAN\n- Automatically adjust the number of Intrinsic Mode Functions (IMFs)\n- Classify IMFs into high-frequency and low-frequency components\n- Visualize decomposed signals and IMFs\n\n## Installation\n\nYou can install PyComposer using pip:\n\n```bash\npip install pydecomposer\n```\n\n## Usage\n\nHere's a quick example of how to use PyComposer:\n\n```python\nimport numpy as np\nfrom pydecomposer import DecompositionModel\n\n# Generate a sample signal\nt = np.linspace(0, 1, 1000)\nsignal = np.sin(2*np.pi*10*t) + 0.5*np.sin(2*np.pi*50*t)\n\n# Create a DecompositionModel instance\nmodel = DecompositionModel()\n\n# Execute the decomposition\nmodel.run(signal)\n\n# Get the decomposed signals\nhigh_freq, medium_freq, low_freq, residual = model.get_signals()\n\n```\n\n## GitHub\n\nFor more detailed information please visit the GitHub Repo [full documentation](https://github.com/gems-yc4923/PyDecomposer).\n\n## Dependencies\n\n- numpy\n- matplotlib\n- vmdpy\n- EntropyHub\n- PyEMD\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nThis project is licensed under the Apache License, Version 2.0 - see the [LICENSE](LICENSE) file for details.\n\n## Contact\n\nFor any issues or questions, please contact <*<yc2349@ac.ic.uk>*.\n",
"bugtrack_url": null,
"license": null,
"summary": "A tool for advanced signal decomposition using VMD and CEEMDAN",
"version": "1.1.5",
"project_urls": {
"Homepage": "https://github.com/gems-yc4923/PyDecomposer"
},
"split_keywords": [
"signal",
"decomposition",
"vmd",
"ceemdan"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "994411c4775f91971e54ffc2c1608446ba73930372b97d3c18e6af1a5af566e8",
"md5": "7852f5fc321213b8879d9843f4c2383b",
"sha256": "1a94df70fd02440a4cfc153a32e29aebc565fc553b30ccb32feeb5c7c94fb0b1"
},
"downloads": -1,
"filename": "pydecomposer-1.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7852f5fc321213b8879d9843f4c2383b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9695,
"upload_time": "2024-08-24T22:21:34",
"upload_time_iso_8601": "2024-08-24T22:21:34.355274Z",
"url": "https://files.pythonhosted.org/packages/99/44/11c4775f91971e54ffc2c1608446ba73930372b97d3c18e6af1a5af566e8/pydecomposer-1.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a00920e558ad1a1707dac46427c4fc775400cce259f3657eaecc3c5c83a1cd8d",
"md5": "2a300b8f9dca435800f3d229e8486fa0",
"sha256": "c4bb5ee3852fbd84cf649a5e62ad484dc817091e1916b9b1678f0c421cca518d"
},
"downloads": -1,
"filename": "pydecomposer-1.1.5.tar.gz",
"has_sig": false,
"md5_digest": "2a300b8f9dca435800f3d229e8486fa0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9067,
"upload_time": "2024-08-24T22:21:36",
"upload_time_iso_8601": "2024-08-24T22:21:36.139561Z",
"url": "https://files.pythonhosted.org/packages/a0/09/20e558ad1a1707dac46427c4fc775400cce259f3657eaecc3c5c83a1cd8d/pydecomposer-1.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-24 22:21:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gems-yc4923",
"github_project": "PyDecomposer",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pydecomposer"
}