Name | pydfc JSON |
Version |
1.0.4
JSON |
| download |
home_page | |
Summary | This package aims to provide a comprehensive framework for assessing dynamic functional connectivity (dFC) using multiple methods and comparing results across methods. |
upload_time | 2024-03-14 00:40:11 |
maintainer | |
docs_url | None |
author | Mohammad Torabi |
requires_python | >=3.8 |
license | MIT |
keywords |
dfc package
neuroimaging
python
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.10161176.svg
:target: https://zenodo.org/doi/10.5281/zenodo.10161176
pydfc
=======
An implementation of several well-known dynamic Functional Connectivity (dFC) assessment methods.
Simply do these steps in the main repository directory to learn how to use the dFC functions:
* ``conda create --name pydfc_env python=3.11``
* ``conda activate pydfc_env``
* ``pip install -e '.'``
* run the code cells in demo jupyter notebooks
The ``dFC_methods_demo.ipynb`` illustrates how to load data and apply each of the dFC methods implemented in the ``pydfc`` toolbox individually.
The ``multi_analysis_demo.ipynb`` illustrates how to use the ``pydfc`` toolbox to apply multiple dFC methods at the same time on a dataset and compare their results.
For more details about the implemented methods and the comparison analysis see `our paper <https://www.biorxiv.org/content/10.1101/2023.07.13.548883v2>`_.
* Torabi M, Mitsis GD, Poline JB. On the variability of dynamic functional connectivity assessment methods. bioRxiv. 2023:2023-07.
Raw data
{
"_id": null,
"home_page": "",
"name": "pydfc",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Mohammad Torabi <mohammad.torabi@mail.mcgill.ca>",
"keywords": "dFC package,neuroimaging,python",
"author": "Mohammad Torabi",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/72/be/6c8f6e97eb6b04984d54af45a9a1137c231d21d70d8937ea93dd9a282e3d/pydfc-1.0.4.tar.gz",
"platform": null,
"description": ".. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.10161176.svg\n :target: https://zenodo.org/doi/10.5281/zenodo.10161176\n\npydfc\n=======\nAn implementation of several well-known dynamic Functional Connectivity (dFC) assessment methods.\n\nSimply do these steps in the main repository directory to learn how to use the dFC functions:\n * ``conda create --name pydfc_env python=3.11``\n * ``conda activate pydfc_env``\n * ``pip install -e '.'``\n * run the code cells in demo jupyter notebooks\n\nThe ``dFC_methods_demo.ipynb`` illustrates how to load data and apply each of the dFC methods implemented in the ``pydfc`` toolbox individually.\nThe ``multi_analysis_demo.ipynb`` illustrates how to use the ``pydfc`` toolbox to apply multiple dFC methods at the same time on a dataset and compare their results.\n\nFor more details about the implemented methods and the comparison analysis see `our paper <https://www.biorxiv.org/content/10.1101/2023.07.13.548883v2>`_.\n\n * Torabi M, Mitsis GD, Poline JB. On the variability of dynamic functional connectivity assessment methods. bioRxiv. 2023:2023-07. \n",
"bugtrack_url": null,
"license": "MIT",
"summary": "This package aims to provide a comprehensive framework for assessing dynamic functional connectivity (dFC) using multiple methods and comparing results across methods.",
"version": "1.0.4",
"project_urls": null,
"split_keywords": [
"dfc package",
"neuroimaging",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "056212abe667f6dcce7a854bd12121511c2a6ff3e2c53280485032b7f47535c7",
"md5": "c699de6ad85d2b6870cc336eef0441b9",
"sha256": "405cd50df150137805e4dc2ee69c5f007803197d52ce144c82c0d1e47f66fc1a"
},
"downloads": -1,
"filename": "pydfc-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c699de6ad85d2b6870cc336eef0441b9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 56392,
"upload_time": "2024-03-14T00:40:09",
"upload_time_iso_8601": "2024-03-14T00:40:09.005835Z",
"url": "https://files.pythonhosted.org/packages/05/62/12abe667f6dcce7a854bd12121511c2a6ff3e2c53280485032b7f47535c7/pydfc-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "72be6c8f6e97eb6b04984d54af45a9a1137c231d21d70d8937ea93dd9a282e3d",
"md5": "a26b3884932619e7a6d27ce186c5525c",
"sha256": "09b83dc373656c7f12066bcd2b304ca5769a1e05c23b840c76ebb082884528bd"
},
"downloads": -1,
"filename": "pydfc-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "a26b3884932619e7a6d27ce186c5525c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 3350235,
"upload_time": "2024-03-14T00:40:11",
"upload_time_iso_8601": "2024-03-14T00:40:11.565146Z",
"url": "https://files.pythonhosted.org/packages/72/be/6c8f6e97eb6b04984d54af45a9a1137c231d21d70d8937ea93dd9a282e3d/pydfc-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-14 00:40:11",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pydfc"
}