|GHAction| |CircleCI| |codecov|
|Pydralogo|
.. |Pydralogo| image:: https://raw.githubusercontent.com/nipype/pydra/master/docs/logo/pydra_logo.jpg
:width: 200px
:alt: pydra logo
.. |GHAction| image:: https://github.com/nipype/pydra/workflows/Pydra/badge.svg
:alt: GitHub Actions CI
:target: https://github.com/nipype/Pydra/actions
.. |CircleCI| image:: https://circleci.com/gh/nipype/pydra.svg?style=svg
:alt: CircleCI
.. |codecov| image:: https://codecov.io/gh/nipype/pydra/branch/master/graph/badge.svg
:alt: codecov
======================
Pydra: Dataflow Engine
======================
A simple dataflow engine with scalable semantics.
Pydra is a rewrite of the Nipype engine with mapping and joining as
first-class operations. It forms the core of the Nipype 2.0 ecosystem.
The goal of pydra is to provide a lightweight Python dataflow engine for DAG
construction, manipulation, and distributed execution.
Feature list:
=============
1. Python 3.7+ using type annotation and `attrs <https://www.attrs.org/en/stable/>`_
2. Composable dataflows with simple node semantics. A dataflow can be a node of another dataflow.
3. `splitter` and `combiner` provides many ways of compressing complex loop semantics
4. Cached execution with support for a global cache across dataflows and users
5. Distributed execution, presently via ConcurrentFutures, SLURM, and Dask (this is an experimental implementation with limited testing)
`API Documentation <https://nipype.github.io/pydra/>`_
Learn more about Pydra
======================
* `SciPy 2020 Proceedings <http://conference.scipy.org/proceedings/scipy2020/pydra.html>`_
* `PyCon 2020 Poster <https://docs.google.com/presentation/d/10tS2I34rS0G9qz6v29qVd77OUydjP_FdBklrgAGmYSw/edit?usp=sharing>`_
* `Explore Pydra interactively <https://github.com/nipype/pydra-tutorial>`_ (the tutorial can be also run using Binder service)
|Binder|
.. |Binder| image:: https://mybinder.org/badge_logo.svg
:alt: Binder
Please note that mybinder times out after an hour.
Installation
============
::
pip install pydra
Note that installation fails with older versions of pip on Windows. Upgrade pip before installing:
::
pip install –upgrade pip
pip install pydra
Developer installation
======================
Pydra requires Python 3.7+. To install in developer mode:
::
git clone git@github.com:nipype/pydra.git
cd pydra
pip install -e ".[dev]"
In order to run pydra's test locally:
::
pytest -vs pydra
If you want to test execution with Dask:
::
git clone git@github.com:nipype/pydra.git
cd pydra
pip install -e ".[dask]"
It is also useful to install pre-commit:
::
pip install pre-commit
pre-commit
Raw data
{
"_id": null,
"home_page": null,
"name": "pydra",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Nipype developers <neuroimaging@python.org>",
"keywords": "brainweb, dataflow, neuroimaging, pydra",
"author": null,
"author_email": "Nipype developers <neuroimaging@python.org>",
"download_url": "https://files.pythonhosted.org/packages/a5/80/6e027de441fbd8b4e70d2b9f94f286b585a5577a00cff878c88ed2a635ee/pydra-0.25.tar.gz",
"platform": null,
"description": "|GHAction| |CircleCI| |codecov|\n\n|Pydralogo|\n\n.. |Pydralogo| image:: https://raw.githubusercontent.com/nipype/pydra/master/docs/logo/pydra_logo.jpg\n :width: 200px\n :alt: pydra logo\n\n.. |GHAction| image:: https://github.com/nipype/pydra/workflows/Pydra/badge.svg\n :alt: GitHub Actions CI\n :target: https://github.com/nipype/Pydra/actions\n\n.. |CircleCI| image:: https://circleci.com/gh/nipype/pydra.svg?style=svg\n :alt: CircleCI\n\n.. |codecov| image:: https://codecov.io/gh/nipype/pydra/branch/master/graph/badge.svg\n :alt: codecov\n\n======================\nPydra: Dataflow Engine\n======================\n\nA simple dataflow engine with scalable semantics.\n\nPydra is a rewrite of the Nipype engine with mapping and joining as\nfirst-class operations. It forms the core of the Nipype 2.0 ecosystem.\n\nThe goal of pydra is to provide a lightweight Python dataflow engine for DAG\nconstruction, manipulation, and distributed execution.\n\nFeature list:\n=============\n1. Python 3.7+ using type annotation and `attrs <https://www.attrs.org/en/stable/>`_\n2. Composable dataflows with simple node semantics. A dataflow can be a node of another dataflow.\n3. `splitter` and `combiner` provides many ways of compressing complex loop semantics\n4. Cached execution with support for a global cache across dataflows and users\n5. Distributed execution, presently via ConcurrentFutures, SLURM, and Dask (this is an experimental implementation with limited testing)\n\n`API Documentation <https://nipype.github.io/pydra/>`_\n\nLearn more about Pydra\n======================\n\n* `SciPy 2020 Proceedings <http://conference.scipy.org/proceedings/scipy2020/pydra.html>`_\n* `PyCon 2020 Poster <https://docs.google.com/presentation/d/10tS2I34rS0G9qz6v29qVd77OUydjP_FdBklrgAGmYSw/edit?usp=sharing>`_\n* `Explore Pydra interactively <https://github.com/nipype/pydra-tutorial>`_ (the tutorial can be also run using Binder service)\n\n|Binder|\n\n.. |Binder| image:: https://mybinder.org/badge_logo.svg\n :alt: Binder\n\n\nPlease note that mybinder times out after an hour.\n\nInstallation\n============\n\n::\n\n pip install pydra\n\n\nNote that installation fails with older versions of pip on Windows. Upgrade pip before installing:\n\n::\n\n pip install \u2013upgrade pip\n pip install pydra\n\n\nDeveloper installation\n======================\n\nPydra requires Python 3.7+. To install in developer mode:\n\n::\n\n git clone git@github.com:nipype/pydra.git\n cd pydra\n pip install -e \".[dev]\"\n\n\nIn order to run pydra's test locally:\n\n::\n\n pytest -vs pydra\n\n\nIf you want to test execution with Dask:\n\n::\n\n git clone git@github.com:nipype/pydra.git\n cd pydra\n pip install -e \".[dask]\"\n\n\n\nIt is also useful to install pre-commit:\n\n::\n\n pip install pre-commit\n pre-commit\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Pydra dataflow engine",
"version": "0.25",
"project_urls": {
"documentation": "https://nipype.github.io/pydra/",
"homepage": "https://nipype.github.io/pydra/",
"repository": "https://github.com/nipype/pydra.git"
},
"split_keywords": [
"brainweb",
" dataflow",
" neuroimaging",
" pydra"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "84b686de6647b6b8c706f3ca550bf5a1e5d2f674d7a404aca575e9c07998367c",
"md5": "0d87ac0a3b55e290f01155517aa3e3ee",
"sha256": "3fec6cc8e60cabb698fc6259ab265aede4961d33be84b31f677bc9e251c49c15"
},
"downloads": -1,
"filename": "pydra-0.25-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0d87ac0a3b55e290f01155517aa3e3ee",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 10590506,
"upload_time": "2024-11-15T13:30:04",
"upload_time_iso_8601": "2024-11-15T13:30:04.678894Z",
"url": "https://files.pythonhosted.org/packages/84/b6/86de6647b6b8c706f3ca550bf5a1e5d2f674d7a404aca575e9c07998367c/pydra-0.25-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a5806e027de441fbd8b4e70d2b9f94f286b585a5577a00cff878c88ed2a635ee",
"md5": "7017957664353d69cf8b41cebbf5551f",
"sha256": "bf3f4e31a369fa69db6c5d6b1c27248b1541e647032a33f239c53c052846791f"
},
"downloads": -1,
"filename": "pydra-0.25.tar.gz",
"has_sig": false,
"md5_digest": "7017957664353d69cf8b41cebbf5551f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 10572304,
"upload_time": "2024-11-15T13:30:07",
"upload_time_iso_8601": "2024-11-15T13:30:07.848157Z",
"url": "https://files.pythonhosted.org/packages/a5/80/6e027de441fbd8b4e70d2b9f94f286b585a5577a00cff878c88ed2a635ee/pydra-0.25.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-15 13:30:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nipype",
"github_project": "pydra",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"circle": true,
"lcname": "pydra"
}