This pacakge provides various tools to perform task on data, in easy and efficient manner; more
modules could be added into the tools collection with development.
1. universal way to connect most database softwares via JDBC (include kerberos auth for Hive), using Fast/Batch load
technology to speed up the temporary table creation and query; as well as functions to convert clob
into string or save the blob into specified file.
2. add multiprocessing capablity to pandas dataframe when dealing with cpu intensive
operation on large volume data.
3. form based authentication module for requests package.
4. restapi client using aiohttp package with retry function.
sample usage:
## connect to mysql
import pydtc
conn = pydtc.connect('mysql', '127.0.0.1', 'user', 'pass')
pydtc.read_sql('select * from demo.sample', conn)
conn.close()
### or use with clause for auto close
with pydtc.connect('mysql', '127.0.0.1', 'user', 'pass') as conn:
conn.read_sql('select * from demo.sample')
# pydtc.read_sql('select * from demo.sample', conn)
## DBAPI 2.0
with pydtc.connect_dbapi('mysql', '127.0.0.1', 'user', 'pass') as conn:
pd.read_sql('select * from demo.sample', conn)
## pandas multiprocessing groupby then apply
def func(df, key, value):
dd = {key : value}
dd['some_key'] = [len(df.other_key)]
return pd.DataFrame(dd)
new_df = pydtc.p_groupby_apply(func, df, 'group_key')
## access web page in website with form based authenticaion
from pydtc import HttpFormAuth
import requests
r = requests.get('http://www.example.com/private_webpage.html', auth=HttpFormAuth('user', 'password'))
## restapi get and update
# Fake Online REST API for Testing and Prototyping
# https://jsonplaceholder.typicode.com/
from pydtc import api_get, api_update
api_get('https://jsonplaceholder.typicode.com/todos/1')
# or
api_update('https://jsonplaceholder.typicode.com/todos/1', data={'title': 'foo'}, method='patch')
Raw data
{
"_id": null,
"home_page": "https://github.com/cctester/pydtc",
"name": "pydtc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": null,
"keywords": "pandas, multiprocessing, database, restapi, requests",
"author": "cctester",
"author_email": "cctester2001@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b0/32/bc544138c7dede921a2c63c444e0bf4791ee0864adbb7ae7acaf6786dbc5/pydtc-0.7.2.tar.gz",
"platform": null,
"description": "This pacakge provides various tools to perform task on data, in easy and efficient manner; more\nmodules could be added into the tools collection with development.\n\n1. universal way to connect most database softwares via JDBC (include kerberos auth for Hive), using Fast/Batch load\ntechnology to speed up the temporary table creation and query; as well as functions to convert clob \ninto string or save the blob into specified file. \n\n2. add multiprocessing capablity to pandas dataframe when dealing with cpu intensive\noperation on large volume data.\n\n3. form based authentication module for requests package.\n\n4. restapi client using aiohttp package with retry function.\n\nsample usage:\n\n ## connect to mysql\n import pydtc\n\n conn = pydtc.connect('mysql', '127.0.0.1', 'user', 'pass')\n pydtc.read_sql('select * from demo.sample', conn)\n conn.close()\n \n ### or use with clause for auto close\n with pydtc.connect('mysql', '127.0.0.1', 'user', 'pass') as conn:\n conn.read_sql('select * from demo.sample')\n # pydtc.read_sql('select * from demo.sample', conn)\n\n ## DBAPI 2.0 \n with pydtc.connect_dbapi('mysql', '127.0.0.1', 'user', 'pass') as conn:\n pd.read_sql('select * from demo.sample', conn)\n\n ## pandas multiprocessing groupby then apply\n def func(df, key, value):\n dd = {key : value}\n dd['some_key'] = [len(df.other_key)]\n\n return pd.DataFrame(dd)\n\n new_df = pydtc.p_groupby_apply(func, df, 'group_key')\n\n ## access web page in website with form based authenticaion\n from pydtc import HttpFormAuth\n import requests\n\n r = requests.get('http://www.example.com/private_webpage.html', auth=HttpFormAuth('user', 'password'))\n\n ## restapi get and update\n # Fake Online REST API for Testing and Prototyping\n # https://jsonplaceholder.typicode.com/\n from pydtc import api_get, api_update\n\n api_get('https://jsonplaceholder.typicode.com/todos/1')\n # or\n api_update('https://jsonplaceholder.typicode.com/todos/1', data={'title': 'foo'}, method='patch')",
"bugtrack_url": null,
"license": null,
"summary": "tools collection for data engineer",
"version": "0.7.2",
"project_urls": {
"Homepage": "https://github.com/cctester/pydtc"
},
"split_keywords": [
"pandas",
" multiprocessing",
" database",
" restapi",
" requests"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b032bc544138c7dede921a2c63c444e0bf4791ee0864adbb7ae7acaf6786dbc5",
"md5": "60ced09234a0434f0d92328442cac988",
"sha256": "4f338fa06ba4dc006ceeca6a0e9f6ee45fc529d8fddfd8389e49fd5d1b9c901c"
},
"downloads": -1,
"filename": "pydtc-0.7.2.tar.gz",
"has_sig": false,
"md5_digest": "60ced09234a0434f0d92328442cac988",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 10367,
"upload_time": "2025-01-21T13:52:27",
"upload_time_iso_8601": "2025-01-21T13:52:27.086844Z",
"url": "https://files.pythonhosted.org/packages/b0/32/bc544138c7dede921a2c63c444e0bf4791ee0864adbb7ae7acaf6786dbc5/pydtc-0.7.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-21 13:52:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cctester",
"github_project": "pydtc",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pydtc"
}