[![pypi version](https://img.shields.io/pypi/v/pydts)](https://pypi.org/project/pydts/)
[![Tests](https://github.com/tomer1812/pydts/workflows/Tests/badge.svg)](https://github.com/tomer1812/pydts/actions?workflow=Tests)
[![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://tomer1812.github.io/pydts)
[![codecov](https://codecov.io/gh/tomer1812/pydts/branch/main/graph/badge.svg)](https://codecov.io/gh/tomer1812/pydts)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6466158.svg)](https://doi.org/10.5281/zenodo.6466158)
# Discrete Time Survival Analysis
A Python package for discrete-time survival data analysis with competing risks.
![PyDTS](docs/icon.png)
[Tomer Meir](https://tomer1812.github.io/), [Rom Gutman](https://github.com/RomGutman), [Malka Gorfine](https://www.tau.ac.il/~gorfinem/) 2022
[Documentation](https://tomer1812.github.io/pydts/)
## Installation
```console
pip install pydts
```
## Quick Start
```python
from pydts.fitters import TwoStagesFitter
from pydts.examples_utils.generate_simulations_data import generate_quick_start_df
patients_df = generate_quick_start_df(n_patients=10000, n_cov=5, d_times=14, j_events=2, pid_col='pid', seed=0)
fitter = TwoStagesFitter()
fitter.fit(df=patients_df.drop(['C', 'T'], axis=1))
fitter.print_summary()
```
## Examples
1. [Usage Example](https://tomer1812.github.io/pydts/UsageExample-Intro/)
2. [Hospital Length of Stay Simulation Example](https://tomer1812.github.io/pydts/SimulatedDataset/)
## Citations
If you found PyDTS software useful to your research, please cite the papers:
```bibtex
@article{Meir_PyDTS_2022,
author = {Meir, Tomer and Gutman, Rom, and Gorfine, Malka},
doi = {10.48550/arXiv.2204.05731},
title = {{PyDTS: A Python Package for Discrete Time Survival Analysis with Competing Risks}},
url = {https://arxiv.org/abs/2204.05731},
year = {2022}
}
@article{Meir_Gorfine_DTSP_2023,
author = {Meir, Tomer and Gorfine, Malka},
doi = {10.48550/arXiv.2303.01186},
title = {{Discrete-time Competing-Risks Regression with or without Penalization}},
url = {https://arxiv.org/abs/2303.01186},
year = {2023}
}
```
and please consider starring the project [on GitHub](https://github.com/tomer1812/pydts)
## How to Contribute
1. Open Github issues to suggest new features or to report bugs\errors
2. Contact Tomer or Rom if you want to add a usage example to the documentation
3. If you want to become a developer (thank you, we appreciate it!) - please contact Tomer or Rom for developers' on-boarding
Tomer Meir: tomer1812@gmail.com, Rom Gutman: rom.gutman1@gmail.com
Raw data
{
"_id": null,
"home_page": "https://github.com/tomer1812/pydts",
"name": "pydts",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.11,>=3.8",
"maintainer_email": null,
"keywords": "Discrete Time, Time to Event, Survival Analysis, Competing Events",
"author": "Tomer Meir",
"author_email": "tomer1812@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b1/8d/8eaba3d4853f28f634a3d3bbd0ae4251c4674f366ff222784b4de2f94c6f/pydts-0.9.6.tar.gz",
"platform": null,
"description": "[![pypi version](https://img.shields.io/pypi/v/pydts)](https://pypi.org/project/pydts/)\n[![Tests](https://github.com/tomer1812/pydts/workflows/Tests/badge.svg)](https://github.com/tomer1812/pydts/actions?workflow=Tests)\n[![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://tomer1812.github.io/pydts)\n[![codecov](https://codecov.io/gh/tomer1812/pydts/branch/main/graph/badge.svg)](https://codecov.io/gh/tomer1812/pydts)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6466158.svg)](https://doi.org/10.5281/zenodo.6466158)\n\n# Discrete Time Survival Analysis \nA Python package for discrete-time survival data analysis with competing risks.\n\n![PyDTS](docs/icon.png) \n\n[Tomer Meir](https://tomer1812.github.io/), [Rom Gutman](https://github.com/RomGutman), [Malka Gorfine](https://www.tau.ac.il/~gorfinem/) 2022\n\n[Documentation](https://tomer1812.github.io/pydts/) \n\n## Installation\n```console\npip install pydts\n```\n\n## Quick Start\n\n```python\nfrom pydts.fitters import TwoStagesFitter\nfrom pydts.examples_utils.generate_simulations_data import generate_quick_start_df\n\npatients_df = generate_quick_start_df(n_patients=10000, n_cov=5, d_times=14, j_events=2, pid_col='pid', seed=0)\n\nfitter = TwoStagesFitter()\nfitter.fit(df=patients_df.drop(['C', 'T'], axis=1))\nfitter.print_summary()\n```\n\n## Examples\n1. [Usage Example](https://tomer1812.github.io/pydts/UsageExample-Intro/)\n2. [Hospital Length of Stay Simulation Example](https://tomer1812.github.io/pydts/SimulatedDataset/)\n\n## Citations\nIf you found PyDTS software useful to your research, please cite the papers:\n\n```bibtex\n@article{Meir_PyDTS_2022,\n author = {Meir, Tomer and Gutman, Rom, and Gorfine, Malka},\n doi = {10.48550/arXiv.2204.05731},\n title = {{PyDTS: A Python Package for Discrete Time Survival Analysis with Competing Risks}},\n url = {https://arxiv.org/abs/2204.05731},\n year = {2022}\n}\n\n@article{Meir_Gorfine_DTSP_2023,\n author = {Meir, Tomer and Gorfine, Malka},\n doi = {10.48550/arXiv.2303.01186},\n title = {{Discrete-time Competing-Risks Regression with or without Penalization}},\n url = {https://arxiv.org/abs/2303.01186},\n year = {2023}\n}\n```\n\nand please consider starring the project [on GitHub](https://github.com/tomer1812/pydts)\n\n## How to Contribute\n1. Open Github issues to suggest new features or to report bugs\\errors\n2. Contact Tomer or Rom if you want to add a usage example to the documentation \n3. If you want to become a developer (thank you, we appreciate it!) - please contact Tomer or Rom for developers' on-boarding \n\nTomer Meir: tomer1812@gmail.com, Rom Gutman: rom.gutman1@gmail.com",
"bugtrack_url": null,
"license": "GNU GPLv3",
"summary": "Discrete time survival analysis with competing risks",
"version": "0.9.6",
"project_urls": {
"Documentation": "https://tomer1812.github.io/pydts",
"Homepage": "https://github.com/tomer1812/pydts",
"Repository": "https://github.com/tomer1812/pydts"
},
"split_keywords": [
"discrete time",
" time to event",
" survival analysis",
" competing events"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9ecdc869da493747780885f6acfd34f5468f2496315c0c6b34ffc5a37262507d",
"md5": "061178848c3c1717100d2ba97731febe",
"sha256": "4b12dee299a7fae195e9ac8dfedca6ac47b340aaf32679e38e43907f09894dbe"
},
"downloads": -1,
"filename": "pydts-0.9.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "061178848c3c1717100d2ba97731febe",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.8",
"size": 1452996,
"upload_time": "2024-10-10T19:23:28",
"upload_time_iso_8601": "2024-10-10T19:23:28.929416Z",
"url": "https://files.pythonhosted.org/packages/9e/cd/c869da493747780885f6acfd34f5468f2496315c0c6b34ffc5a37262507d/pydts-0.9.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b18d8eaba3d4853f28f634a3d3bbd0ae4251c4674f366ff222784b4de2f94c6f",
"md5": "6cf36f140ffbb697f91dc508a1bbddd7",
"sha256": "1667e82cf0bc64b3b300b5722e80778ab9398664532ae1a1ba35defea714dbaf"
},
"downloads": -1,
"filename": "pydts-0.9.6.tar.gz",
"has_sig": false,
"md5_digest": "6cf36f140ffbb697f91dc508a1bbddd7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.11,>=3.8",
"size": 1377339,
"upload_time": "2024-10-10T19:23:31",
"upload_time_iso_8601": "2024-10-10T19:23:31.514258Z",
"url": "https://files.pythonhosted.org/packages/b1/8d/8eaba3d4853f28f634a3d3bbd0ae4251c4674f366ff222784b4de2f94c6f/pydts-0.9.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-10 19:23:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tomer1812",
"github_project": "pydts",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pydts"
}