<h1 align="center">PyExasol</h1>
<p align="center">
<a href="https://github.com/exasol/pyexasol/actions/workflows/pr-merge.yml">
<img src="https://github.com/exasol/pyexasol/actions/workflows/pr-merge.yml/badge.svg?branch=master" alt="Continuous Integration (master)">
</a>
<a href="https://anaconda.org/conda-forge/pyexasol">
<img src="https://anaconda.org/conda-forge/pyexasol/badges/version.svg" alt="Anaconda">
</a>
<a href="https://pypi.org/project/pyexasol/">
<img src="https://img.shields.io/pypi/v/pyexasol" alt="PyPi Package">
</a>
<a href="https://pypi.org/project/pyexasol/">
<img src="https://img.shields.io/pypi/dm/pyexasol" alt="Downloads">
</a>
<a href="https://pypi.org/project/pyexasol/">
<img src="https://img.shields.io/pypi/pyversions/pyexasol" alt="Supported Python Versions">
</a>
</p>
PyExasol is the officially supported Python connector for [Exasol](https://www.exasol.com). It helps to handle massive volumes of data commonly associated with this DBMS.
You may expect significant performance improvement over ODBC in a single process scenario involving pandas or polars.
PyExasol provides an [API](https://exasol.github.io/pyexasol/master/api.html) to read & write multiple data streams in parallel using separate processes, which is necessary to fully utilize hardware and achieve linear scalability. With PyExasol you are no longer limited to a single CPU core.
---
* Documentation: [https://exasol.github.io/pyexasol/](https://exasol.github.io/pyexasol/index.html)
* Source Code: [https://github.com/exasol/pyexasol](https://github.com/exasol/pyexasol)
---
## PyExasol Main Concepts
- Based on [WebSocket protocol](https://github.com/exasol/websocket-api);
- Optimized for minimum overhead;
- Easy integration with pandas and polars via HTTP transport;
- Compression to reduce network bottleneck;
## System Requirements
- Exasol >= 7.1
- Python >= 3.9
## Getting Started
Check out PyExasol's [Getting Started](https://exasol.github.io/pyexasol/master/user_guide/getting_started.html) page for your first steps.
## Developers
* Created by [Vitaly Markov](https://www.linkedin.com/in/markov-vitaly/), 2018 — 2022
* Maintained by [Exasol](https://www.exasol.com) 2023 — Today
Raw data
{
"_id": null,
"home_page": "https://www.exasol.com/",
"name": "pyexasol",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0.0,>=3.9.2",
"maintainer_email": null,
"keywords": "exasol, sql, database, performance, websocket, import, export",
"author": "Vitaly Markov",
"author_email": "wild.desu@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/95/62/ebf2d15504f6e63acb19e7f952aa4a7ced7ee16a744d6f833dd6ca57a6b2/pyexasol-1.0.1.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">PyExasol</h1>\n<p align=\"center\">\n<a href=\"https://github.com/exasol/pyexasol/actions/workflows/pr-merge.yml\">\n <img src=\"https://github.com/exasol/pyexasol/actions/workflows/pr-merge.yml/badge.svg?branch=master\" alt=\"Continuous Integration (master)\">\n</a>\n<a href=\"https://anaconda.org/conda-forge/pyexasol\">\n <img src=\"https://anaconda.org/conda-forge/pyexasol/badges/version.svg\" alt=\"Anaconda\">\n</a>\n<a href=\"https://pypi.org/project/pyexasol/\">\n <img src=\"https://img.shields.io/pypi/v/pyexasol\" alt=\"PyPi Package\">\n</a>\n<a href=\"https://pypi.org/project/pyexasol/\">\n <img src=\"https://img.shields.io/pypi/dm/pyexasol\" alt=\"Downloads\">\n</a>\n<a href=\"https://pypi.org/project/pyexasol/\">\n <img src=\"https://img.shields.io/pypi/pyversions/pyexasol\" alt=\"Supported Python Versions\">\n</a>\n</p>\n\nPyExasol is the officially supported Python connector for [Exasol](https://www.exasol.com). It helps to handle massive volumes of data commonly associated with this DBMS.\n\nYou may expect significant performance improvement over ODBC in a single process scenario involving pandas or polars.\n\nPyExasol provides an [API](https://exasol.github.io/pyexasol/master/api.html) to read & write multiple data streams in parallel using separate processes, which is necessary to fully utilize hardware and achieve linear scalability. With PyExasol you are no longer limited to a single CPU core.\n\n---\n* Documentation: [https://exasol.github.io/pyexasol/](https://exasol.github.io/pyexasol/index.html)\n* Source Code: [https://github.com/exasol/pyexasol](https://github.com/exasol/pyexasol)\n---\n\n## PyExasol Main Concepts\n\n- Based on [WebSocket protocol](https://github.com/exasol/websocket-api);\n- Optimized for minimum overhead;\n- Easy integration with pandas and polars via HTTP transport;\n- Compression to reduce network bottleneck;\n\n\n## System Requirements\n\n- Exasol >= 7.1\n- Python >= 3.9\n\n## Getting Started\n\nCheck out PyExasol's [Getting Started](https://exasol.github.io/pyexasol/master/user_guide/getting_started.html) page for your first steps.\n\n## Developers\n* Created by [Vitaly Markov](https://www.linkedin.com/in/markov-vitaly/), 2018 \u2014 2022\n* Maintained by [Exasol](https://www.exasol.com) 2023 \u2014 Today\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Exasol python driver with extra features",
"version": "1.0.1",
"project_urls": {
"Changelog": "https://github.com/exasol/pyexasol/blob/master/CHANGELOG.md",
"Documentation": "https://github.com/exasol/pyexasol/",
"Homepage": "https://www.exasol.com/",
"Issues": "https://github.com/exasol/pyexasol/issues",
"Source": "https://github.com/exasol/pyexasol"
},
"split_keywords": [
"exasol",
" sql",
" database",
" performance",
" websocket",
" import",
" export"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1da96a1c640a61c417917ca520593b37ea4fe3d60e7c9d5d9b4462d60f35472f",
"md5": "c877cf323682fc0c96373d9fd2e91892",
"sha256": "2984ff5ee7b5f7261a74d3f2d32ad59b19d23ff96e4349a02b32fb94007c3cc9"
},
"downloads": -1,
"filename": "pyexasol-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c877cf323682fc0c96373d9fd2e91892",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0.0,>=3.9.2",
"size": 68132,
"upload_time": "2025-09-03T08:53:43",
"upload_time_iso_8601": "2025-09-03T08:53:43.323758Z",
"url": "https://files.pythonhosted.org/packages/1d/a9/6a1c640a61c417917ca520593b37ea4fe3d60e7c9d5d9b4462d60f35472f/pyexasol-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9562ebf2d15504f6e63acb19e7f952aa4a7ced7ee16a744d6f833dd6ca57a6b2",
"md5": "03c744b1bae96f0483e55afa94dae780",
"sha256": "81825975ad8931b3ad025191b27f2255ff3c067ce80482b9d2c6db07a2dd164f"
},
"downloads": -1,
"filename": "pyexasol-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "03c744b1bae96f0483e55afa94dae780",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0.0,>=3.9.2",
"size": 57364,
"upload_time": "2025-09-03T08:53:44",
"upload_time_iso_8601": "2025-09-03T08:53:44.276708Z",
"url": "https://files.pythonhosted.org/packages/95/62/ebf2d15504f6e63acb19e7f952aa4a7ced7ee16a744d6f833dd6ca57a6b2/pyexasol-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-03 08:53:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "exasol",
"github_project": "pyexasol",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pyexasol"
}