pyezzi


Namepyezzi JSON
Version 0.8.1 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2025-07-16 07:46:40
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords medical image processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ======
pYezzi
======

Compute the thickness of a solid using Yezzi and Prince method described in
the article "An Eulerian PDE Approach for Computing Tissue Thickness", IEEE
TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003. [#]_

A C implementation by Rubén Cárdenes [#]_ helped me a lot writing this,
especially the anisotropic part.

.. [#] http://dx.doi.org/10.1109/tmi.2003.817775
.. [#] http://www.dtic.upf.edu/~rcardenes/Ruben_Cardenes/Software.html


Requirements
============

Runtime: numpy.

Build time: cython.

Test time: scikit-image, scipy.


Installation instruction
========================

Available on pypi. [#]_
Use pip: ``pip install pyezzi``

Alternatively, clone the repository and build cython modules with
``pip install .``.

.. [#]  https://pypi.python.org/pypi/pyezzi

Usage
=====

Command line
------------

This package provides a basic CLI. Example usage:

.. code:: bash

    pyezzi /path/to/endo.mha /path/to/epi.mha /path/to/output.mha [--weights /path/to/thickness_weights.mha]

Python API
----------

Full API documentation is available on
`gitlabpages.inria.fr <https://ncedilni.gitlabpages.inria.fr/pyezzi>`_.

.. code:: python

    from pyezzi import compute_thickness_cardiac

    thickness = compute_thickness_cardiac(endo, epi)

``endo`` and ``epi`` are numpy binary masks.
``endo`` represents the "inside" boundary of the domain, e.g., the cardiac ventricular blood pool.
``epi`` represents the "outside" boundary of the domain, e.g., the cardiac ventricular epicardium.

A ``spacing`` parameter specifying the spacing between voxels along the axes
can optionnaly be specified.

A ``weights`` parameter can be added to account for "holes" in the wall, cf
"Cedilnik & Peyrat, Weighted tissue thickness, FIMH 2023". [#]_

Check out the included jupyter notebooks in the ``example`` folder for more
details.

.. [#] https://hal.science/hal-04111276/

Contributions
=============

We recommend using `uv <https://docs.astral.sh/uv/>`_ for project management
and `pre-commit <https://pre-commit.com/>`_ to ensure code quality.

After cloning, use ``uv sync --frozen --all-groups --all-extras`` to install dev dependencies.
This will set up a virtualenv in ``.venv`` that you can activate with
``source .venv/bin/activate``. Tests can then be run with ``pytest test``.

To build the cython extension modules in place, use ``python setup.py develop``.

License
=======

This work is licensed under the french CeCILL license. [#]_
You're free to use and modify the code, but please cite the original paper and
me.

.. [#] https://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyezzi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "medical image processing",
    "author": null,
    "author_email": "Nicolas Cedilnik <nicoco@nicoco.fr>",
    "download_url": "https://files.pythonhosted.org/packages/1d/dd/f373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32/pyezzi-0.8.1.tar.gz",
    "platform": null,
    "description": "======\npYezzi\n======\n\nCompute the thickness of a solid using Yezzi and Prince method described in\nthe article \"An Eulerian PDE Approach for Computing Tissue Thickness\", IEEE\nTRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003. [#]_\n\nA C implementation by Rub\u00e9n C\u00e1rdenes [#]_ helped me a lot writing this,\nespecially the anisotropic part.\n\n.. [#] http://dx.doi.org/10.1109/tmi.2003.817775\n.. [#] http://www.dtic.upf.edu/~rcardenes/Ruben_Cardenes/Software.html\n\n\nRequirements\n============\n\nRuntime: numpy.\n\nBuild time: cython.\n\nTest time: scikit-image, scipy.\n\n\nInstallation instruction\n========================\n\nAvailable on pypi. [#]_\nUse pip: ``pip install pyezzi``\n\nAlternatively, clone the repository and build cython modules with\n``pip install .``.\n\n.. [#]  https://pypi.python.org/pypi/pyezzi\n\nUsage\n=====\n\nCommand line\n------------\n\nThis package provides a basic CLI. Example usage:\n\n.. code:: bash\n\n    pyezzi /path/to/endo.mha /path/to/epi.mha /path/to/output.mha [--weights /path/to/thickness_weights.mha]\n\nPython API\n----------\n\nFull API documentation is available on\n`gitlabpages.inria.fr <https://ncedilni.gitlabpages.inria.fr/pyezzi>`_.\n\n.. code:: python\n\n    from pyezzi import compute_thickness_cardiac\n\n    thickness = compute_thickness_cardiac(endo, epi)\n\n``endo`` and ``epi`` are numpy binary masks.\n``endo`` represents the \"inside\" boundary of the domain, e.g., the cardiac ventricular blood pool.\n``epi`` represents the \"outside\" boundary of the domain, e.g., the cardiac ventricular epicardium.\n\nA ``spacing`` parameter specifying the spacing between voxels along the axes\ncan optionnaly be specified.\n\nA ``weights`` parameter can be added to account for \"holes\" in the wall, cf\n\"Cedilnik & Peyrat, Weighted tissue thickness, FIMH 2023\". [#]_\n\nCheck out the included jupyter notebooks in the ``example`` folder for more\ndetails.\n\n.. [#] https://hal.science/hal-04111276/\n\nContributions\n=============\n\nWe recommend using `uv <https://docs.astral.sh/uv/>`_ for project management\nand `pre-commit <https://pre-commit.com/>`_ to ensure code quality.\n\nAfter cloning, use ``uv sync --frozen --all-groups --all-extras`` to install dev dependencies.\nThis will set up a virtualenv in ``.venv`` that you can activate with\n``source .venv/bin/activate``. Tests can then be run with ``pytest test``.\n\nTo build the cython extension modules in place, use ``python setup.py develop``.\n\nLicense\n=======\n\nThis work is licensed under the french CeCILL license. [#]_\nYou're free to use and modify the code, but please cite the original paper and\nme.\n\n.. [#] https://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.8.1",
    "project_urls": null,
    "split_keywords": [
        "medical",
        "image",
        "processing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5985be61f8aff051daf8d31feb6f6c49481fbce7894d353bfcbfcef228d0d7e3",
                "md5": "f11ee9a1827cc88350f4c8c55f0eb029",
                "sha256": "ff7686204ebb110c778bf2a33cf582cef1167a87de5d7411646dc515cdea2753"
            },
            "downloads": -1,
            "filename": "pyezzi-0.8.1-cp310-cp310-manylinux_2_38_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f11ee9a1827cc88350f4c8c55f0eb029",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 3095794,
            "upload_time": "2025-07-16T07:46:31",
            "upload_time_iso_8601": "2025-07-16T07:46:31.292727Z",
            "url": "https://files.pythonhosted.org/packages/59/85/be61f8aff051daf8d31feb6f6c49481fbce7894d353bfcbfcef228d0d7e3/pyezzi-0.8.1-cp310-cp310-manylinux_2_38_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e49999b7b8adee469d14b2807a4c7a842ed2d090491b5914a7aa49c613a37e0f",
                "md5": "c51211fea2b651e7c6efe925c33f539c",
                "sha256": "187677d723bd1c99895944879d235e227031bd92376c874d39b7ad24b4aaf6f6"
            },
            "downloads": -1,
            "filename": "pyezzi-0.8.1-cp311-cp311-manylinux_2_38_x86_64.whl",
            "has_sig": false,
            "md5_digest": "c51211fea2b651e7c6efe925c33f539c",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.10",
            "size": 3231739,
            "upload_time": "2025-07-16T07:46:33",
            "upload_time_iso_8601": "2025-07-16T07:46:33.557706Z",
            "url": "https://files.pythonhosted.org/packages/e4/99/99b7b8adee469d14b2807a4c7a842ed2d090491b5914a7aa49c613a37e0f/pyezzi-0.8.1-cp311-cp311-manylinux_2_38_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6aa7e061263e22a4768fc5503e72076bbc4fde98b7335021c7b05411f2bef6fa",
                "md5": "240a3a4dcb2fb23080754665de11b3e7",
                "sha256": "2aadceca74672d7527da19429317194b69901808f4072df43faec0b1ba1a0e04"
            },
            "downloads": -1,
            "filename": "pyezzi-0.8.1-cp312-cp312-manylinux_2_38_x86_64.whl",
            "has_sig": false,
            "md5_digest": "240a3a4dcb2fb23080754665de11b3e7",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.10",
            "size": 3207150,
            "upload_time": "2025-07-16T07:46:36",
            "upload_time_iso_8601": "2025-07-16T07:46:36.231843Z",
            "url": "https://files.pythonhosted.org/packages/6a/a7/e061263e22a4768fc5503e72076bbc4fde98b7335021c7b05411f2bef6fa/pyezzi-0.8.1-cp312-cp312-manylinux_2_38_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "eccd3f4bec06235d8286a08813ab86bb2ef72f6069f5b6a8ab792f9c8fde558b",
                "md5": "59ef048302489f7b305f22c5366ed6ed",
                "sha256": "72c82e51a27bd9a9dacff439cb639ca4eb3423218903dde7dc27ef4ffae364d5"
            },
            "downloads": -1,
            "filename": "pyezzi-0.8.1-cp313-cp313-manylinux_2_38_x86_64.whl",
            "has_sig": false,
            "md5_digest": "59ef048302489f7b305f22c5366ed6ed",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.10",
            "size": 3178265,
            "upload_time": "2025-07-16T07:46:37",
            "upload_time_iso_8601": "2025-07-16T07:46:37.993129Z",
            "url": "https://files.pythonhosted.org/packages/ec/cd/3f4bec06235d8286a08813ab86bb2ef72f6069f5b6a8ab792f9c8fde558b/pyezzi-0.8.1-cp313-cp313-manylinux_2_38_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1dddf373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32",
                "md5": "e786f654a03a534fcc7d33611c6f6626",
                "sha256": "d2b8b23efac855a9a8a0b31874204a6863239e1c1b23eb76c37f0f7ab368a07b"
            },
            "downloads": -1,
            "filename": "pyezzi-0.8.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e786f654a03a534fcc7d33611c6f6626",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 9155960,
            "upload_time": "2025-07-16T07:46:40",
            "upload_time_iso_8601": "2025-07-16T07:46:40.808166Z",
            "url": "https://files.pythonhosted.org/packages/1d/dd/f373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32/pyezzi-0.8.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-16 07:46:40",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pyezzi"
}
        
Elapsed time: 1.72395s