Name | pyezzi JSON |
Version |
0.8.1
JSON |
| download |
home_page | None |
Summary | None |
upload_time | 2025-07-16 07:46:40 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | None |
keywords |
medical
image
processing
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
======
pYezzi
======
Compute the thickness of a solid using Yezzi and Prince method described in
the article "An Eulerian PDE Approach for Computing Tissue Thickness", IEEE
TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003. [#]_
A C implementation by Rubén Cárdenes [#]_ helped me a lot writing this,
especially the anisotropic part.
.. [#] http://dx.doi.org/10.1109/tmi.2003.817775
.. [#] http://www.dtic.upf.edu/~rcardenes/Ruben_Cardenes/Software.html
Requirements
============
Runtime: numpy.
Build time: cython.
Test time: scikit-image, scipy.
Installation instruction
========================
Available on pypi. [#]_
Use pip: ``pip install pyezzi``
Alternatively, clone the repository and build cython modules with
``pip install .``.
.. [#] https://pypi.python.org/pypi/pyezzi
Usage
=====
Command line
------------
This package provides a basic CLI. Example usage:
.. code:: bash
pyezzi /path/to/endo.mha /path/to/epi.mha /path/to/output.mha [--weights /path/to/thickness_weights.mha]
Python API
----------
Full API documentation is available on
`gitlabpages.inria.fr <https://ncedilni.gitlabpages.inria.fr/pyezzi>`_.
.. code:: python
from pyezzi import compute_thickness_cardiac
thickness = compute_thickness_cardiac(endo, epi)
``endo`` and ``epi`` are numpy binary masks.
``endo`` represents the "inside" boundary of the domain, e.g., the cardiac ventricular blood pool.
``epi`` represents the "outside" boundary of the domain, e.g., the cardiac ventricular epicardium.
A ``spacing`` parameter specifying the spacing between voxels along the axes
can optionnaly be specified.
A ``weights`` parameter can be added to account for "holes" in the wall, cf
"Cedilnik & Peyrat, Weighted tissue thickness, FIMH 2023". [#]_
Check out the included jupyter notebooks in the ``example`` folder for more
details.
.. [#] https://hal.science/hal-04111276/
Contributions
=============
We recommend using `uv <https://docs.astral.sh/uv/>`_ for project management
and `pre-commit <https://pre-commit.com/>`_ to ensure code quality.
After cloning, use ``uv sync --frozen --all-groups --all-extras`` to install dev dependencies.
This will set up a virtualenv in ``.venv`` that you can activate with
``source .venv/bin/activate``. Tests can then be run with ``pytest test``.
To build the cython extension modules in place, use ``python setup.py develop``.
License
=======
This work is licensed under the french CeCILL license. [#]_
You're free to use and modify the code, but please cite the original paper and
me.
.. [#] https://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html
Raw data
{
"_id": null,
"home_page": null,
"name": "pyezzi",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "medical image processing",
"author": null,
"author_email": "Nicolas Cedilnik <nicoco@nicoco.fr>",
"download_url": "https://files.pythonhosted.org/packages/1d/dd/f373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32/pyezzi-0.8.1.tar.gz",
"platform": null,
"description": "======\npYezzi\n======\n\nCompute the thickness of a solid using Yezzi and Prince method described in\nthe article \"An Eulerian PDE Approach for Computing Tissue Thickness\", IEEE\nTRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003. [#]_\n\nA C implementation by Rub\u00e9n C\u00e1rdenes [#]_ helped me a lot writing this,\nespecially the anisotropic part.\n\n.. [#] http://dx.doi.org/10.1109/tmi.2003.817775\n.. [#] http://www.dtic.upf.edu/~rcardenes/Ruben_Cardenes/Software.html\n\n\nRequirements\n============\n\nRuntime: numpy.\n\nBuild time: cython.\n\nTest time: scikit-image, scipy.\n\n\nInstallation instruction\n========================\n\nAvailable on pypi. [#]_\nUse pip: ``pip install pyezzi``\n\nAlternatively, clone the repository and build cython modules with\n``pip install .``.\n\n.. [#] https://pypi.python.org/pypi/pyezzi\n\nUsage\n=====\n\nCommand line\n------------\n\nThis package provides a basic CLI. Example usage:\n\n.. code:: bash\n\n pyezzi /path/to/endo.mha /path/to/epi.mha /path/to/output.mha [--weights /path/to/thickness_weights.mha]\n\nPython API\n----------\n\nFull API documentation is available on\n`gitlabpages.inria.fr <https://ncedilni.gitlabpages.inria.fr/pyezzi>`_.\n\n.. code:: python\n\n from pyezzi import compute_thickness_cardiac\n\n thickness = compute_thickness_cardiac(endo, epi)\n\n``endo`` and ``epi`` are numpy binary masks.\n``endo`` represents the \"inside\" boundary of the domain, e.g., the cardiac ventricular blood pool.\n``epi`` represents the \"outside\" boundary of the domain, e.g., the cardiac ventricular epicardium.\n\nA ``spacing`` parameter specifying the spacing between voxels along the axes\ncan optionnaly be specified.\n\nA ``weights`` parameter can be added to account for \"holes\" in the wall, cf\n\"Cedilnik & Peyrat, Weighted tissue thickness, FIMH 2023\". [#]_\n\nCheck out the included jupyter notebooks in the ``example`` folder for more\ndetails.\n\n.. [#] https://hal.science/hal-04111276/\n\nContributions\n=============\n\nWe recommend using `uv <https://docs.astral.sh/uv/>`_ for project management\nand `pre-commit <https://pre-commit.com/>`_ to ensure code quality.\n\nAfter cloning, use ``uv sync --frozen --all-groups --all-extras`` to install dev dependencies.\nThis will set up a virtualenv in ``.venv`` that you can activate with\n``source .venv/bin/activate``. Tests can then be run with ``pytest test``.\n\nTo build the cython extension modules in place, use ``python setup.py develop``.\n\nLicense\n=======\n\nThis work is licensed under the french CeCILL license. [#]_\nYou're free to use and modify the code, but please cite the original paper and\nme.\n\n.. [#] https://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html\n",
"bugtrack_url": null,
"license": null,
"summary": null,
"version": "0.8.1",
"project_urls": null,
"split_keywords": [
"medical",
"image",
"processing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5985be61f8aff051daf8d31feb6f6c49481fbce7894d353bfcbfcef228d0d7e3",
"md5": "f11ee9a1827cc88350f4c8c55f0eb029",
"sha256": "ff7686204ebb110c778bf2a33cf582cef1167a87de5d7411646dc515cdea2753"
},
"downloads": -1,
"filename": "pyezzi-0.8.1-cp310-cp310-manylinux_2_38_x86_64.whl",
"has_sig": false,
"md5_digest": "f11ee9a1827cc88350f4c8c55f0eb029",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 3095794,
"upload_time": "2025-07-16T07:46:31",
"upload_time_iso_8601": "2025-07-16T07:46:31.292727Z",
"url": "https://files.pythonhosted.org/packages/59/85/be61f8aff051daf8d31feb6f6c49481fbce7894d353bfcbfcef228d0d7e3/pyezzi-0.8.1-cp310-cp310-manylinux_2_38_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e49999b7b8adee469d14b2807a4c7a842ed2d090491b5914a7aa49c613a37e0f",
"md5": "c51211fea2b651e7c6efe925c33f539c",
"sha256": "187677d723bd1c99895944879d235e227031bd92376c874d39b7ad24b4aaf6f6"
},
"downloads": -1,
"filename": "pyezzi-0.8.1-cp311-cp311-manylinux_2_38_x86_64.whl",
"has_sig": false,
"md5_digest": "c51211fea2b651e7c6efe925c33f539c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 3231739,
"upload_time": "2025-07-16T07:46:33",
"upload_time_iso_8601": "2025-07-16T07:46:33.557706Z",
"url": "https://files.pythonhosted.org/packages/e4/99/99b7b8adee469d14b2807a4c7a842ed2d090491b5914a7aa49c613a37e0f/pyezzi-0.8.1-cp311-cp311-manylinux_2_38_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6aa7e061263e22a4768fc5503e72076bbc4fde98b7335021c7b05411f2bef6fa",
"md5": "240a3a4dcb2fb23080754665de11b3e7",
"sha256": "2aadceca74672d7527da19429317194b69901808f4072df43faec0b1ba1a0e04"
},
"downloads": -1,
"filename": "pyezzi-0.8.1-cp312-cp312-manylinux_2_38_x86_64.whl",
"has_sig": false,
"md5_digest": "240a3a4dcb2fb23080754665de11b3e7",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 3207150,
"upload_time": "2025-07-16T07:46:36",
"upload_time_iso_8601": "2025-07-16T07:46:36.231843Z",
"url": "https://files.pythonhosted.org/packages/6a/a7/e061263e22a4768fc5503e72076bbc4fde98b7335021c7b05411f2bef6fa/pyezzi-0.8.1-cp312-cp312-manylinux_2_38_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eccd3f4bec06235d8286a08813ab86bb2ef72f6069f5b6a8ab792f9c8fde558b",
"md5": "59ef048302489f7b305f22c5366ed6ed",
"sha256": "72c82e51a27bd9a9dacff439cb639ca4eb3423218903dde7dc27ef4ffae364d5"
},
"downloads": -1,
"filename": "pyezzi-0.8.1-cp313-cp313-manylinux_2_38_x86_64.whl",
"has_sig": false,
"md5_digest": "59ef048302489f7b305f22c5366ed6ed",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 3178265,
"upload_time": "2025-07-16T07:46:37",
"upload_time_iso_8601": "2025-07-16T07:46:37.993129Z",
"url": "https://files.pythonhosted.org/packages/ec/cd/3f4bec06235d8286a08813ab86bb2ef72f6069f5b6a8ab792f9c8fde558b/pyezzi-0.8.1-cp313-cp313-manylinux_2_38_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1dddf373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32",
"md5": "e786f654a03a534fcc7d33611c6f6626",
"sha256": "d2b8b23efac855a9a8a0b31874204a6863239e1c1b23eb76c37f0f7ab368a07b"
},
"downloads": -1,
"filename": "pyezzi-0.8.1.tar.gz",
"has_sig": false,
"md5_digest": "e786f654a03a534fcc7d33611c6f6626",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 9155960,
"upload_time": "2025-07-16T07:46:40",
"upload_time_iso_8601": "2025-07-16T07:46:40.808166Z",
"url": "https://files.pythonhosted.org/packages/1d/dd/f373f4832b3287fc25ce4e0e33ab744e34a994e9a06a81eb09d853514a32/pyezzi-0.8.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 07:46:40",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pyezzi"
}