pyfairsim


Namepyfairsim JSON
Version 0.0.3 PyPI version JSON
download
home_page
SummaryA package to run sim reconstructions including parameter estimation.
upload_time2023-06-23 07:55:54
maintainer
docs_urlNone
authorJakob Wessendorf
requires_python>=3
license
keywords sim reconstruction parameter estimation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyFairSIM

python version of the fast sim project

# install
run:

`pip install pyfairsim`

# settings

All settings and physical parameters are read from a json file.
To get an example file run python -m create_example_settings.py and change all the explaining texts to the values you need.

# run parameter estimation

To run a parameter estimation for a given sim-stack use

`python -m pyfairsim.parameter_estimation -f <path-to-image> -s <path-to-settings> -o <path-to-save-settings>`

For help use python -m parameter_estimation.py -h. Settings and save settings path can be the same then the obtained values overwrite the old values.

# run reconstruction

To run a reconstruction for a given sim-stack use

`python -m pyfairsim.reconstruction -f <path-to-image> -s <path-to-settings> -o <path-to-save-reconstructed-image>`

For help use python -m reconstruction.py -h

# run batch reconstruction

Runs a parameter estimation and then a reconstruction on all .tiff/.tif files in given folder and all subfolders.
Command:

`python -m pyfairsim.batch_reconstruction`

# run absolute phase estimation

Runs a non-iterative phase estimation based on auto-correlation by Wicker et al. For it to work parameter estimation needs to be executed first.

`python -m pyfairsim.phase_estimation -f <path-to-image> -s <path-to-settings> -o <path-to-save-settings>`

# run tiled reconstruction

ATTENTION still in development!!! Tile size should be an even number, only supports square images with sizes divisible by the tile size. Overlap of the tiles for now is hard coded to be half of the tile size. Before running this a parameter estimation and phase estimation needs to be run. Tiled reconstruction will use absolute phase estimation for the tiles.

`python -m pyfairsim.tiled_reconstruction -f <path-to-image> -s <path-to-settings> -o <path-to-save-reconstructed-image>`

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pyfairsim",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "sim,reconstruction,parameter estimation",
    "author": "Jakob Wessendorf",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/3e/a4/7a20752d9ec29b88e1c2cf53724392e735b081d979ceca816c369d462a23/pyfairsim-0.0.3.tar.gz",
    "platform": null,
    "description": "# pyFairSIM\r\n\r\npython version of the fast sim project\r\n\r\n# install\r\nrun:\r\n\r\n`pip install pyfairsim`\r\n\r\n# settings\r\n\r\nAll settings and physical parameters are read from a json file.\r\nTo get an example file run python -m create_example_settings.py and change all the explaining texts to the values you need.\r\n\r\n# run parameter estimation\r\n\r\nTo run a parameter estimation for a given sim-stack use\r\n\r\n`python -m pyfairsim.parameter_estimation -f <path-to-image> -s <path-to-settings> -o <path-to-save-settings>`\r\n\r\nFor help use python -m parameter_estimation.py -h. Settings and save settings path can be the same then the obtained values overwrite the old values.\r\n\r\n# run reconstruction\r\n\r\nTo run a reconstruction for a given sim-stack use\r\n\r\n`python -m pyfairsim.reconstruction -f <path-to-image> -s <path-to-settings> -o <path-to-save-reconstructed-image>`\r\n\r\nFor help use python -m reconstruction.py -h\r\n\r\n# run batch reconstruction\r\n\r\nRuns a parameter estimation and then a reconstruction on all .tiff/.tif files in given folder and all subfolders.\r\nCommand:\r\n\r\n`python -m pyfairsim.batch_reconstruction`\r\n\r\n# run absolute phase estimation\r\n\r\nRuns a non-iterative phase estimation based on auto-correlation by Wicker et al. For it to work parameter estimation needs to be executed first.\r\n\r\n`python -m pyfairsim.phase_estimation -f <path-to-image> -s <path-to-settings> -o <path-to-save-settings>`\r\n\r\n# run tiled reconstruction\r\n\r\nATTENTION still in development!!! Tile size should be an even number, only supports square images with sizes divisible by the tile size. Overlap of the tiles for now is hard coded to be half of the tile size. Before running this a parameter estimation and phase estimation needs to be run. Tiled reconstruction will use absolute phase estimation for the tiles.\r\n\r\n`python -m pyfairsim.tiled_reconstruction -f <path-to-image> -s <path-to-settings> -o <path-to-save-reconstructed-image>`\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A package to run sim reconstructions including parameter estimation.",
    "version": "0.0.3",
    "project_urls": null,
    "split_keywords": [
        "sim",
        "reconstruction",
        "parameter estimation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69aa3811b70cf8ee7d6dacf17ea71c0c83285ad44f6209b7d7be9772ed3af085",
                "md5": "dd47e9b673bb0639302791664ad15570",
                "sha256": "f1bd531340427011825523b75e38d5b72119353a670aa3392ebc7cda8e177bf9"
            },
            "downloads": -1,
            "filename": "pyfairsim-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd47e9b673bb0639302791664ad15570",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 38216,
            "upload_time": "2023-06-23T07:55:52",
            "upload_time_iso_8601": "2023-06-23T07:55:52.174581Z",
            "url": "https://files.pythonhosted.org/packages/69/aa/3811b70cf8ee7d6dacf17ea71c0c83285ad44f6209b7d7be9772ed3af085/pyfairsim-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ea47a20752d9ec29b88e1c2cf53724392e735b081d979ceca816c369d462a23",
                "md5": "64f868c8cd5034d2c34bed4220d32526",
                "sha256": "1e86c15b312a5c1ef0bf69c17729a85422608c5747f8016975732eca8f6d92af"
            },
            "downloads": -1,
            "filename": "pyfairsim-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "64f868c8cd5034d2c34bed4220d32526",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 33005,
            "upload_time": "2023-06-23T07:55:54",
            "upload_time_iso_8601": "2023-06-23T07:55:54.834380Z",
            "url": "https://files.pythonhosted.org/packages/3e/a4/7a20752d9ec29b88e1c2cf53724392e735b081d979ceca816c369d462a23/pyfairsim-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-23 07:55:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pyfairsim"
}
        
Elapsed time: 0.28325s