pyfca
=====
https://github.com/pyfca/pyfca
Python Formal Concept Analysis (`FCA`_).
The purpose is to collect algoritms for FCA.
Algorithms
----------
So far:
lattice construction:
- AddIntent
implications basis:
- Koenig
lattice drawing:
- create lattice diagram and output in
- svg
- tkinter
Plan
----
- Create a basic lattice data structure:
- Merge existing sources available online.
Lattice construction:
- FCbO
- InClose2
- ...
Implications basis:
- Closure
- LinClosure
- Wild's Closure
- ...
.. _`FCA`: https://en.wikipedia.org/wiki/Formal_concept_analysis
Usage
-----
It can be used to create a concept lattice and to draw it either using tkinter() or svg().
.. code::
import pyfca
fca = pyfca.Lattice([{1,2},{2},{1,3}])
diagram = pyfca.LatticeDiagram(fca,4*297,4*210)
diagram.svg().saveas('tmp.svg')
import cairosvg
cairosvg.svg2png(url="file:///<path to tmp.svg>", write_to='tmp.png')
The ``AddIntent`` algorithm is from the paper:
AddIntent: A New Incremental Algorithm for Constructing Concept Lattices
The lattice drawing algorithm is from:
`Galicia <http://www.iro.umontreal.ca/~galicia/>`_
Implications
------------
This uses the python int as a bit field to store the FCA context.
See this `blog`_ for more.
.. _`blog`: http://rolandpuntaier.blogspot.com/2015/07/implications.html
Raw data
{
"_id": null,
"home_page": "https://github.com/pyfca/pyfca",
"name": "pyfca",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Documentation",
"author": "Roland Puntaier",
"author_email": "roland.puntaier@gmail.com",
"download_url": "",
"platform": null,
"description": "pyfca\n=====\n\nhttps://github.com/pyfca/pyfca\n\nPython Formal Concept Analysis (`FCA`_).\n\nThe purpose is to collect algoritms for FCA.\n\nAlgorithms\n----------\n\nSo far:\n\nlattice construction:\n\n- AddIntent\n\nimplications basis:\n\n- Koenig\n\nlattice drawing:\n\n- create lattice diagram and output in \n\n - svg\n - tkinter\n\nPlan\n----\n\n- Create a basic lattice data structure:\n\n- Merge existing sources available online.\n\n Lattice construction:\n\n - FCbO\n - InClose2\n - ...\n\n Implications basis:\n\n - Closure\n - LinClosure\n - Wild's Closure\n - ...\n\n\n.. _`FCA`: https://en.wikipedia.org/wiki/Formal_concept_analysis\n\n\n\nUsage\n-----\n\nIt can be used to create a concept lattice and to draw it either using tkinter() or svg().\n\n.. code::\n\n import pyfca\n fca = pyfca.Lattice([{1,2},{2},{1,3}])\n diagram = pyfca.LatticeDiagram(fca,4*297,4*210)\n diagram.svg().saveas('tmp.svg')\n import cairosvg\n cairosvg.svg2png(url=\"file:///<path to tmp.svg>\", write_to='tmp.png')\n\n\n\nThe ``AddIntent`` algorithm is from the paper:\n\n AddIntent: A New Incremental Algorithm for Constructing Concept Lattices\n\n\nThe lattice drawing algorithm is from:\n\n `Galicia <http://www.iro.umontreal.ca/~galicia/>`_\n \n \n\n\nImplications\n------------\n\nThis uses the python int as a bit field to store the FCA context.\n\nSee this `blog`_ for more.\n\n\n.. _`blog`: http://rolandpuntaier.blogspot.com/2015/07/implications.html\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "pyfca - python formal concept analysis",
"version": "0.3.3",
"split_keywords": [
"documentation"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "919d5bec03778551d71e12397526efd4",
"sha256": "b0e3b17695b2c1c481e8d9d42b9ec94faec1347f3303f337374d30b3b34394d0"
},
"downloads": -1,
"filename": "pyfca-0.3.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "919d5bec03778551d71e12397526efd4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 13169,
"upload_time": "2022-12-31T14:09:40",
"upload_time_iso_8601": "2022-12-31T14:09:40.067248Z",
"url": "https://files.pythonhosted.org/packages/17/4c/4b56011026cfaea21389be9776ca9d1b3cb03f11bf41c2527817d0f9c0d7/pyfca-0.3.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-31 14:09:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "pyfca",
"github_project": "pyfca",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyfca"
}