pyforwind


Namepyforwind JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/fiddir/pyforwind
SummarySynthetic IEC-conform wind fields with extended turbulence characteristics
upload_time2024-10-25 12:40:02
maintainerJan Friedrich
docs_urlNone
authorNone
requires_pythonNone
licenseLGPL-3.0
keywords synthetic wind fields inflow turbulence wind energy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pyforwind
=========

An open-source package to generate synthetic IEC-conform wind fields with extended turbulence characteristics. 

Installation
------------

The ``pyforwind`` package is available on pypi and can be installed using pip

.. code-block:: shell

    pip install pyforwind

How to use this package
-----------------------

Generate superstatistical Kaimal wind field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To use ``pyforwind`` to generate a Kaimal wind field ``u_kaimal`` and its superstatistical (i.e., non-Gaussian)
extension ``u_super_kaimal``, import the ``SFW`` with the model parameters: integral length scale ``L``, intermittency coefficient ``mu``,
horizontal wind speed at rotor hub ``V_hub``, hub height ``h_hub``, time length and diameter ``(T, diam)``, resolution ``(N_T, N_rotor)``,
and the wind field type ``kind``.

.. code-block:: python

    from pyforwind import SFW

    swf_kaimal = SWF(L, mu, V_hub, h_hub, (T, diam), (N_T, N_rotor), kind='gauss')
    swf_super_kaimal = SWF(L, mu, V_hub, h_hub, (T, diam), (N_T, N_rotor), kind='spatiotemporal')
    u_kaimal = swf_kaimal.field(seed)
    u_super_kaimal = swf_super_kaimal.field(seed)

References
----------
Friedrich, J., Moreno, D., Sinhuber, M., Wächter, M., & Peinke, J. (2022). Superstatistical wind fields from pointwise atmospheric turbulence measurements. PRX Energy, 1(2), 023006.

Acknowledgments
---------------
This project is funded by the European Union Horizon Europe Framework program (HORIZON-CL5-2021-D3-03-04) under grant agreement no. 101084205, and by the German Federal Ministry for Economic Affairs and Energy in the scope of the projects EMUwind (03EE2031A/C) and PASTA (03EE2024A/B).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fiddir/pyforwind",
    "name": "pyforwind",
    "maintainer": "Jan Friedrich",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "synthetic wind fields, inflow turbulence, wind energy",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/73/6d/93c648e2947372247863239997f6dd49ee59aa4289a5c3b5f871909e9239/pyforwind-0.1.3.tar.gz",
    "platform": "any",
    "description": "pyforwind\n=========\n\nAn open-source package to generate synthetic IEC-conform wind fields with extended turbulence characteristics. \n\nInstallation\n------------\n\nThe ``pyforwind`` package is available on pypi and can be installed using pip\n\n.. code-block:: shell\n\n    pip install pyforwind\n\nHow to use this package\n-----------------------\n\nGenerate superstatistical Kaimal wind field\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nTo use ``pyforwind`` to generate a Kaimal wind field ``u_kaimal`` and its superstatistical (i.e., non-Gaussian)\nextension ``u_super_kaimal``, import the ``SFW`` with the model parameters: integral length scale ``L``, intermittency coefficient ``mu``,\nhorizontal wind speed at rotor hub ``V_hub``, hub height ``h_hub``, time length and diameter ``(T, diam)``, resolution ``(N_T, N_rotor)``,\nand the wind field type ``kind``.\n\n.. code-block:: python\n\n    from pyforwind import SFW\n\n    swf_kaimal = SWF(L, mu, V_hub, h_hub, (T, diam), (N_T, N_rotor), kind='gauss')\n    swf_super_kaimal = SWF(L, mu, V_hub, h_hub, (T, diam), (N_T, N_rotor), kind='spatiotemporal')\n    u_kaimal = swf_kaimal.field(seed)\n    u_super_kaimal = swf_super_kaimal.field(seed)\n\nReferences\n----------\nFriedrich, J., Moreno, D., Sinhuber, M., W\u00e4chter, M., & Peinke, J. (2022). Superstatistical wind fields from pointwise atmospheric turbulence measurements. PRX Energy, 1(2), 023006.\n\nAcknowledgments\n---------------\nThis project is funded by the European Union Horizon Europe Framework program (HORIZON-CL5-2021-D3-03-04) under grant agreement no. 101084205, and by the German Federal Ministry for Economic Affairs and Energy in the scope of the projects EMUwind (03EE2031A/C) and PASTA (03EE2024A/B).\n",
    "bugtrack_url": null,
    "license": "LGPL-3.0",
    "summary": "Synthetic IEC-conform wind fields with extended turbulence characteristics",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/fiddir/pyforwind"
    },
    "split_keywords": [
        "synthetic wind fields",
        " inflow turbulence",
        " wind energy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "736d93c648e2947372247863239997f6dd49ee59aa4289a5c3b5f871909e9239",
                "md5": "409dd1cd962e4a7603607b4bf8b8fa35",
                "sha256": "0dc5b3053edf7c183193842fa3bbb92905c97ce355c9c5dddb5ede2b8f8a2c65"
            },
            "downloads": -1,
            "filename": "pyforwind-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "409dd1cd962e4a7603607b4bf8b8fa35",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17959,
            "upload_time": "2024-10-25T12:40:02",
            "upload_time_iso_8601": "2024-10-25T12:40:02.872902Z",
            "url": "https://files.pythonhosted.org/packages/73/6d/93c648e2947372247863239997f6dd49ee59aa4289a5c3b5f871909e9239/pyforwind-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-25 12:40:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fiddir",
    "github_project": "pyforwind",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyforwind"
}
        
Elapsed time: 0.36904s