Name | pygeohydro JSON |
Version |
0.19.0
JSON |
| download |
home_page | None |
Summary | Access geospatial web services that offer hydrological data |
upload_time | 2025-01-18 02:51:26 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/pygeohydro_logo.png
:target: https://github.com/hyriver/HyRiver
|
.. image:: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77/status.svg
:target: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77
:alt: JOSS
|
.. |pygeohydro| image:: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml
:alt: Github Actions
.. |pygeoogc| image:: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml
:alt: Github Actions
.. |pygeoutils| image:: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml
:alt: Github Actions
.. |pynhd| image:: https://github.com/hyriver/pynhd/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pynhd/actions/workflows/test.yml
:alt: Github Actions
.. |py3dep| image:: https://github.com/hyriver/py3dep/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/py3dep/actions/workflows/test.yml
:alt: Github Actions
.. |pydaymet| image:: https://github.com/hyriver/pydaymet/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pydaymet/actions/workflows/test.yml
:alt: Github Actions
.. |pygridmet| image:: https://github.com/hyriver/pygridmet/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygridmet/actions/workflows/test.yml
:alt: Github Actions
.. |pynldas2| image:: https://github.com/hyriver/pynldas2/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pynldas2/actions/workflows/test.yml
:alt: Github Actions
.. |async| image:: https://github.com/hyriver/async-retriever/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/async-retriever/actions/workflows/test.yml
:alt: Github Actions
.. |signatures| image:: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml
:alt: Github Actions
================ ====================================================================
Package Description
================ ====================================================================
PyNHD_ Navigate and subset NHDPlus (MR and HR) using web services
Py3DEP_ Access topographic data through National Map's 3DEP web service
PyGeoHydro_ Access NWIS, NID, WQP, eHydro, NLCD, CAMELS, and SSEBop databases
PyDaymet_ Access daily, monthly, and annual climate data via Daymet
PyGridMET_ Access daily climate data via GridMET
PyNLDAS2_ Access hourly NLDAS-2 data via web services
HydroSignatures_ A collection of tools for computing hydrological signatures
AsyncRetriever_ High-level API for asynchronous requests with persistent caching
PyGeoOGC_ Send queries to any ArcGIS RESTful-, WMS-, and WFS-based services
PyGeoUtils_ Utilities for manipulating geospatial, (Geo)JSON, and (Geo)TIFF data
================ ====================================================================
.. _PyGeoHydro: https://github.com/hyriver/pygeohydro
.. _AsyncRetriever: https://github.com/hyriver/async-retriever
.. _PyGeoOGC: https://github.com/hyriver/pygeoogc
.. _PyGeoUtils: https://github.com/hyriver/pygeoutils
.. _PyNHD: https://github.com/hyriver/pynhd
.. _Py3DEP: https://github.com/hyriver/py3dep
.. _PyDaymet: https://github.com/hyriver/pydaymet
.. _PyGridMET: https://github.com/hyriver/pygridmet
.. _PyNLDAS2: https://github.com/hyriver/pynldas2
.. _HydroSignatures: https://github.com/hyriver/hydrosignatures
PyGeoHydro: Retrieve Geospatial Hydrology Data
----------------------------------------------
.. image:: https://img.shields.io/pypi/v/pygeohydro.svg
:target: https://pypi.python.org/pypi/pygeohydro
:alt: PyPi
.. image:: https://img.shields.io/conda/vn/conda-forge/pygeohydro.svg
:target: https://anaconda.org/conda-forge/pygeohydro
:alt: Conda Version
.. image:: https://codecov.io/gh/hyriver/pygeohydro/graph/badge.svg
:target: https://codecov.io/gh/hyriver/pygeohydro
:alt: CodeCov
.. image:: https://img.shields.io/pypi/pyversions/pygeohydro.svg
:target: https://pypi.python.org/pypi/pygeohydro
:alt: Python Versions
.. image:: https://static.pepy.tech/badge/pygeohydro
:target: https://pepy.tech/project/pygeohydro
:alt: Downloads
|
.. image:: https://www.codefactor.io/repository/github/hyriver/pygeohydro/badge/main
:target: https://www.codefactor.io/repository/github/hyriver/pygeohydro/overview/main
:alt: CodeFactor
.. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
:target: https://github.com/astral-sh/ruff
:alt: Ruff
.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
:target: https://github.com/pre-commit/pre-commit
:alt: pre-commit
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/hyriver/HyRiver-examples/main?urlpath=lab/tree/notebooks
:alt: Binder
|
Features
--------
PyGeoHydro (formerly named `hydrodata <https://pypi.org/project/hydrodata>`__) is a part of
`HyRiver <https://github.com/hyriver/HyRiver>`__ software stack that
is designed to aid in hydroclimate analysis through web services. This package provides
access to some public web services that offer geospatial hydrology data. It has three
main modules: ``pygeohydro``, ``plot``, and ``helpers``.
PyGeoHydro supports the following datasets:
* `gNATSGO <https://planetarycomputer.microsoft.com/dataset/gnatsgo-rasters>`__ for
US soil properties.
* `SoilGrids <https://www.isric.org/explore/soilgrids/faq-soilgrids#What_do_the_filename_codes_mean>`__
for seamless global soil properties.
* `Derived Soil Properties <https://www.sciencebase.gov/catalog/item/5fd7c19cd34e30b9123cb51f>`__
for soil porosity, available water capacity, and field capacity across the US.
* `NWIS <https://nwis.waterdata.usgs.gov/nwis>`__ for daily mean streamflow observations
(returned as a ``pandas.DataFrame`` or ``xarray.Dataset`` with station attributes),
* `SensorThings API <https://labs.waterdata.usgs.gov/api-docs/about-sensorthings-api/index.html>`__
for accessing real-time data of USGS sensors.
* `CAMELS <https://ral.ucar.edu/solutions/products/camels>`__ for accessing streamflow
observations (1980-2014) and basin-level attributes of 671 stations within CONUS.
* `Water Quality Portal <https://www.waterqualitydata.us/>`__ for accessing current and
historical water quality data from more than 1.5 million sites across the US,
* `NID <https://nid.sec.usace.army.mil>`__ for accessing the National Inventory of Dams
web service,
* `HCDN 2009 <https://www2.usgs.gov/science/cite-view.php?cite=2932>`__ for identifying sites
where human activity affects the natural flow of the watercourse,
* `NLCD 2021 <https://www.mrlc.gov/>`__ for land cover/land use, imperviousness
descriptor, and canopy data. You can get data using both geometries and coordinates.
* `WBD <https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/>`__ for accessing
Hydrologic Unit (HU) polygon boundaries within the US (all HUC levels).
* `SSEBop <https://earlywarning.usgs.gov/ssebop/modis/daily>`__ for daily actual
evapotranspiration, for both single pixel and gridded data.
* `Irrigation Withdrawals <https://doi.org/10.5066/P9FDLY8P>`__ for estimated
monthly water use for irrigation by 12-digit hydrologic unit in the CONUS for 2015
* `STN <https://stn.wim.usgs.gov/STNWeb/#/>`__ for access USGS Short-Term Network (STN)
* `eHydro <https://navigation.usace.army.mil/Survey/Hydro>`__ for accessing USACE
Hydrographic Surveys that includes topobathymetry data
* `NFHL <https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS>`__ for accessing
FEMA's National Flood Hazard Layer (NFHL) data.
Also, it includes several other functions:
* ``interactive_map``: Interactive map for exploring NWIS stations within a bounding box.
* ``cover_statistics``: Categorical statistics of land use/land cover data.
* ``overland_roughness``: Estimate overland roughness from land use/land cover data.
* ``streamflow_fillna``: Fill missing daily streamflow values with day-of-year averages.
Streamflow observations must be at least for 10-year long.
The ``plot`` module includes two main functions:
* ``signatures``: Hydrologic signature graphs.
* ``cover_legends``: Official NLCD land cover legends for plotting a land cover dataset.
* ``descriptor_legends``: Color map and legends for plotting an imperviousness descriptor dataset.
The ``helpers`` module includes:
* ``nlcd_helper``: A roughness coefficients lookup table for each land cover and imperviousness
descriptor type which is useful for overland flow routing among other applications.
* ``nwis_error``: A dataframe for finding information about NWIS requests' errors.
You can find some example notebooks `here <https://github.com/hyriver/HyRiver-examples>`__.
Moreover, under the hood, PyGeoHydro uses
`PyGeoOGC <https://github.com/hyriver/pygeoogc>`__ and
`AsyncRetriever <https://github.com/hyriver/async-retriever>`__ packages
for making requests in parallel and storing responses in chunks. This improves the
reliability and speed of data retrieval significantly.
You can control the request/response caching behavior and verbosity of the package
by setting the following environment variables:
* ``HYRIVER_CACHE_NAME``: Path to the caching SQLite database for asynchronous HTTP
requests. It defaults to ``./cache/aiohttp_cache.sqlite``
* ``HYRIVER_CACHE_NAME_HTTP``: Path to the caching SQLite database for HTTP requests.
It defaults to ``./cache/http_cache.sqlite``
* ``HYRIVER_CACHE_EXPIRE``: Expiration time for cached requests in seconds. It defaults to
one week.
* ``HYRIVER_CACHE_DISABLE``: Disable reading/writing from/to the cache. The default is false.
* ``HYRIVER_SSL_CERT``: Path to a SSL certificate file.
For example, in your code before making any requests you can do:
.. code-block:: python
import os
os.environ["HYRIVER_CACHE_NAME"] = "path/to/aiohttp_cache.sqlite"
os.environ["HYRIVER_CACHE_NAME_HTTP"] = "path/to/http_cache.sqlite"
os.environ["HYRIVER_CACHE_EXPIRE"] = "3600"
os.environ["HYRIVER_CACHE_DISABLE"] = "true"
os.environ["HYRIVER_SSL_CERT"] = "path/to/cert.pem"
You can also try using PyGeoHydro without installing
it on your system by clicking on the binder badge. A Jupyter Lab
instance with the HyRiver stack pre-installed will be launched in your web browser, and you
can start coding!
Moreover, requests for additional functionalities can be submitted via
`issue tracker <https://github.com/hyriver/pygeohydro/issues>`__.
Citation
--------
If you use any of HyRiver packages in your research, we appreciate citations:
.. code-block:: bibtex
@article{Chegini_2021,
author = {Chegini, Taher and Li, Hong-Yi and Leung, L. Ruby},
doi = {10.21105/joss.03175},
journal = {Journal of Open Source Software},
month = {10},
number = {66},
pages = {1--3},
title = {{HyRiver: Hydroclimate Data Retriever}},
volume = {6},
year = {2021}
}
Installation
------------
You can install PyGeoHydro using ``pip`` after installing ``libgdal`` on your system
(for example, in Ubuntu run ``sudo apt install libgdal-dev``). Moreover, PyGeoHydro has an optional
dependency for using persistent caching, ``requests-cache``. We highly recommend installing
this package as it can significantly speed up send/receive queries. You don't have to change
anything in your code, since PyGeoHydro under-the-hood looks for ``requests-cache`` and
if available, it will automatically use persistent caching:
.. code-block:: console
$ pip install pygeohydro
Alternatively, PyGeoHydro can be installed from the ``conda-forge`` repository
using `Conda <https://docs.conda.io/en/latest/>`__:
.. code-block:: console
$ conda install -c conda-forge pygeohydro
Quick start
-----------
We can obtain river topobathymetry data using the ``EHydro`` class. We can subset
the dataset either using a geometry or a bounding box, based on their ID, or SQL query:
.. code-block:: python
from pygeohydro import EHydro
ehydro = EHydro("points")
topobathy = ehydro.bygeom((-122.53, 45.57, -122.52, 45.59))
We can explore the available NWIS stations within a bounding box using ``interactive_map``
function. It returns an interactive map and by clicking on a station some of the most
important properties of stations are shown.
.. code-block:: python
import pygeohydro as gh
bbox = (-69.5, 45, -69, 45.5)
gh.interactive_map(bbox)
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/interactive_map.png
:target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nwis.ipynb
:alt: Interactive Map
We can select all the stations within this boundary box that have daily mean streamflow data from
``2000-01-01`` to ``2010-12-31``:
.. code-block:: python
from pygeohydro import NWIS
nwis = NWIS()
query = {
"bBox": ",".join(f"{b:.06f}" for b in bbox),
"hasDataTypeCd": "dv",
"outputDataTypeCd": "dv",
}
info_box = nwis.get_info(query)
dates = ("2000-01-01", "2010-12-31")
stations = info_box[
(info_box.begin_date <= dates[0]) & (info_box.end_date >= dates[1])
].site_no.tolist()
Then, we can get the daily streamflow data in mm/day (by default the values are in cms)
and plot them:
.. code-block:: python
from pygeohydro import plot
qobs = nwis.get_streamflow(stations, dates, mmd=True)
plot.signatures(qobs)
By default, ``get_streamflow`` returns a ``pandas.DataFrame`` that has a ``attrs`` method
containing metadata for all the stations. You can access it like so ``qobs.attrs``.
Moreover, we can get the same data as ``xarray.Dataset`` as follows:
.. code-block:: python
qobs_ds = nwis.get_streamflow(stations, dates, to_xarray=True)
This ``xarray.Dataset`` has two dimensions: ``time`` and ``station_id``. It has
10 variables including ``discharge`` with two dimensions while other variables
that are station attitudes are one dimensional.
We can also get instantaneous streamflow data using ``get_streamflow``. This method assumes
that the input dates are in UTC time zone and returns the data in UTC time zone as well.
.. code-block:: python
date = ("2005-01-01 12:00", "2005-01-12 15:00")
qobs = nwis.get_streamflow("01646500", date, freq="iv")
We can query USGS stations of type "stream" in Arizona using SensorThings API
as follows:
.. code-block:: python
odata = {
"filter": "properties/monitoringLocationType eq 'Stream' and properties/stateFIPS eq 'US:04'",
}
df = sensor.query_byodata(odata)
Irrigation withdrawals data can be obtained as follows:
.. code-block:: python
irr = gh.irrigation_withdrawals()
We can get the CAMELS dataset as a ``geopandas.GeoDataFrame`` that includes geometry and
basin-level attributes of 671 natural watersheds within CONUS and their streamflow
observations between 1980-2014 as a ``xarray.Dataset``, like so:
.. code-block:: python
attrs, qobs = gh.get_camels()
The ``WaterQuality`` has a number of convenience methods to retrieve data from the
web service. Since there are many parameter combinations that can be
used to retrieve data, a general method is also provided to retrieve data from
any of the valid endpoints. You can use ``get_json`` to retrieve stations info
as a ``geopandas.GeoDataFrame`` or ``get_csv`` to retrieve stations data as a
``pandas.DataFrame``. You can construct a dictionary of the parameters and pass
it to one of these functions. For more information on the parameters, please
consult the `Water Quality Data documentation <https://www.waterqualitydata.us/webservices_documentation>`__.
For example, let's find all the stations within a bounding box that have Caffeine data:
.. code-block:: python
from pynhd import WaterQuality
bbox = (-92.8, 44.2, -88.9, 46.0)
kwds = {"characteristicName": "Caffeine"}
wq = WaterQuality()
stations = wq.station_bybbox(bbox, kwds)
Or the same criterion but within a 30-mile radius of a point:
.. code-block:: python
stations = wq.station_bydistance(-92.8, 44.2, 30, kwds)
Then we can get the data for all these stations the data like this:
.. code-block:: python
sids = stations.MonitoringLocationIdentifier.tolist()
caff = wq.data_bystation(sids, kwds)
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/water_quality.png
:target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/water_quality.ipynb
:alt: Water Quality
Moreover, we can get land use/land cove data using ``nlcd_bygeom`` or ``nlcd_bycoods`` functions,
percentages of land cover types using ``cover_statistics``, and overland roughness using
``overland_roughness``. The ``nlcd_bycoords`` function returns a ``geopandas.GeoDataFrame``
with the NLCD layers as columns and input coordinates as the ``geometry`` column. Moreover,
the ``nlcd_bygeom`` function accepts both a single geometry or a ``geopandas.GeoDataFrame``
as the input.
.. code-block:: python
from pynhd import NLDI
basins = NLDI().get_basins(["01031450", "01318500", "01031510"])
lulc = gh.nlcd_bygeom(basins, 100, years={"cover": [2016, 2019]})
stats = gh.cover_statistics(lulc["01318500"].cover_2016)
roughness = gh.overland_roughness(lulc["01318500"].cover_2019)
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/lulc.png
:target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nlcd.ipynb
:alt: Land Use/Land Cover
Next, let's use ``ssebopeta_bygeom`` to get actual ET data for a basin. Note that there's a
``ssebopeta_bycoords`` function that returns an ETA time series for a single coordinate.
.. code-block:: python
geometry = NLDI().get_basins("01315500").geometry[0]
eta = gh.ssebopeta_bygeom(geometry, dates=("2005-10-01", "2005-10-05"))
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/eta.png
:target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/ssebop.ipynb
:alt: Actual ET
Additionally, we can pull all the US dams data using ``NID``. Let's get dams that are within this
bounding box and have a maximum storage larger than 200 acre-feet.
.. code-block:: python
nid = NID()
dams = nid.get_bygeom((-65.77, 43.07, -69.31, 45.45), 4326)
dams = nid.inventory_byid(dams.id.to_list())
dams = dams[dams.maxStorage > 200]
We can get also all dams within CONUS with maximum storage larger than 2500 acre-feet:
.. code-block:: python
conus_geom = gh.get_us_states("contiguous")
dam_list = nid.get_byfilter([{"maxStorage": ["[2500 +inf]"]}])
dams = nid.inventory_byid(dam_list[0].id.to_list(), stage_nid=True)
conus_dams = dams[dams.stateKey.isin(conus_geom.STUSPS)].reset_index(drop=True)
.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/dams.png
:target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nid.ipynb
:alt: Dams
The ``WBD`` class allows us to get Hydrologic Unit (HU) polygon boundaries. Let's
get the two Hudson HUC4s:
.. code-block:: python
from pygeohydro import WBD
wbd = WBD("huc4")
hudson = wbd.byids("huc4", ["0202", "0203"])
The ``NFHL`` class allows us to retrieve FEMA's National Flood Hazard Layer (NFHL) data.
Let's get the cross-section data for a small region in Vermont:
.. code-block:: python
from pygeohydro import NFHL
nfhl = NFHL("NFHL", "cross-sections")
gdf_xs = nfhl.bygeom((-73.42, 43.28, -72.9, 43.52), geo_crs=4269)
Contributing
------------
Contributions are very welcomed. Please read
`CONTRIBUTING.rst <https://github.com/hyriver/pygeoogc/blob/main/CONTRIBUTING.rst>`__
file for instructions.
Credits
-------
This package was created based on the `audreyr/cookiecutter-pypackage`__ project template.
__ https://github.com/audreyr/cookiecutter-pypackage
Raw data
{
"_id": null,
"home_page": null,
"name": "pygeohydro",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Taher Chegini <cheginit@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/1b/93/45edbb9f9e84753d6be730776e10b74d6d592715668a98dbf5d7481fdd99/pygeohydro-0.19.0.tar.gz",
"platform": null,
"description": ".. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/pygeohydro_logo.png\n :target: https://github.com/hyriver/HyRiver\n\n|\n\n.. image:: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77/status.svg\n :target: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77\n :alt: JOSS\n\n|\n\n.. |pygeohydro| image:: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pygeoogc| image:: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pygeoutils| image:: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pynhd| image:: https://github.com/hyriver/pynhd/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pynhd/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |py3dep| image:: https://github.com/hyriver/py3dep/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/py3dep/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pydaymet| image:: https://github.com/hyriver/pydaymet/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pydaymet/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pygridmet| image:: https://github.com/hyriver/pygridmet/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pygridmet/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |pynldas2| image:: https://github.com/hyriver/pynldas2/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/pynldas2/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |async| image:: https://github.com/hyriver/async-retriever/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/async-retriever/actions/workflows/test.yml\n :alt: Github Actions\n\n.. |signatures| image:: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml/badge.svg\n :target: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml\n :alt: Github Actions\n\n================ ====================================================================\nPackage Description\n================ ====================================================================\nPyNHD_ Navigate and subset NHDPlus (MR and HR) using web services\nPy3DEP_ Access topographic data through National Map's 3DEP web service\nPyGeoHydro_ Access NWIS, NID, WQP, eHydro, NLCD, CAMELS, and SSEBop databases\nPyDaymet_ Access daily, monthly, and annual climate data via Daymet\nPyGridMET_ Access daily climate data via GridMET\nPyNLDAS2_ Access hourly NLDAS-2 data via web services\nHydroSignatures_ A collection of tools for computing hydrological signatures\nAsyncRetriever_ High-level API for asynchronous requests with persistent caching\nPyGeoOGC_ Send queries to any ArcGIS RESTful-, WMS-, and WFS-based services\nPyGeoUtils_ Utilities for manipulating geospatial, (Geo)JSON, and (Geo)TIFF data\n================ ====================================================================\n\n.. _PyGeoHydro: https://github.com/hyriver/pygeohydro\n.. _AsyncRetriever: https://github.com/hyriver/async-retriever\n.. _PyGeoOGC: https://github.com/hyriver/pygeoogc\n.. _PyGeoUtils: https://github.com/hyriver/pygeoutils\n.. _PyNHD: https://github.com/hyriver/pynhd\n.. _Py3DEP: https://github.com/hyriver/py3dep\n.. _PyDaymet: https://github.com/hyriver/pydaymet\n.. _PyGridMET: https://github.com/hyriver/pygridmet\n.. _PyNLDAS2: https://github.com/hyriver/pynldas2\n.. _HydroSignatures: https://github.com/hyriver/hydrosignatures\n\nPyGeoHydro: Retrieve Geospatial Hydrology Data\n----------------------------------------------\n\n.. image:: https://img.shields.io/pypi/v/pygeohydro.svg\n :target: https://pypi.python.org/pypi/pygeohydro\n :alt: PyPi\n\n.. image:: https://img.shields.io/conda/vn/conda-forge/pygeohydro.svg\n :target: https://anaconda.org/conda-forge/pygeohydro\n :alt: Conda Version\n\n.. image:: https://codecov.io/gh/hyriver/pygeohydro/graph/badge.svg\n :target: https://codecov.io/gh/hyriver/pygeohydro\n :alt: CodeCov\n\n.. image:: https://img.shields.io/pypi/pyversions/pygeohydro.svg\n :target: https://pypi.python.org/pypi/pygeohydro\n :alt: Python Versions\n\n.. image:: https://static.pepy.tech/badge/pygeohydro\n :target: https://pepy.tech/project/pygeohydro\n :alt: Downloads\n\n|\n\n.. image:: https://www.codefactor.io/repository/github/hyriver/pygeohydro/badge/main\n :target: https://www.codefactor.io/repository/github/hyriver/pygeohydro/overview/main\n :alt: CodeFactor\n\n.. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json\n :target: https://github.com/astral-sh/ruff\n :alt: Ruff\n\n.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white\n :target: https://github.com/pre-commit/pre-commit\n :alt: pre-commit\n\n.. image:: https://mybinder.org/badge_logo.svg\n :target: https://mybinder.org/v2/gh/hyriver/HyRiver-examples/main?urlpath=lab/tree/notebooks\n :alt: Binder\n\n|\n\nFeatures\n--------\n\nPyGeoHydro (formerly named `hydrodata <https://pypi.org/project/hydrodata>`__) is a part of\n`HyRiver <https://github.com/hyriver/HyRiver>`__ software stack that\nis designed to aid in hydroclimate analysis through web services. This package provides\naccess to some public web services that offer geospatial hydrology data. It has three\nmain modules: ``pygeohydro``, ``plot``, and ``helpers``.\n\nPyGeoHydro supports the following datasets:\n\n* `gNATSGO <https://planetarycomputer.microsoft.com/dataset/gnatsgo-rasters>`__ for\n US soil properties.\n* `SoilGrids <https://www.isric.org/explore/soilgrids/faq-soilgrids#What_do_the_filename_codes_mean>`__\n for seamless global soil properties.\n* `Derived Soil Properties <https://www.sciencebase.gov/catalog/item/5fd7c19cd34e30b9123cb51f>`__\n for soil porosity, available water capacity, and field capacity across the US.\n* `NWIS <https://nwis.waterdata.usgs.gov/nwis>`__ for daily mean streamflow observations\n (returned as a ``pandas.DataFrame`` or ``xarray.Dataset`` with station attributes),\n* `SensorThings API <https://labs.waterdata.usgs.gov/api-docs/about-sensorthings-api/index.html>`__\n for accessing real-time data of USGS sensors.\n* `CAMELS <https://ral.ucar.edu/solutions/products/camels>`__ for accessing streamflow\n observations (1980-2014) and basin-level attributes of 671 stations within CONUS.\n* `Water Quality Portal <https://www.waterqualitydata.us/>`__ for accessing current and\n historical water quality data from more than 1.5 million sites across the US,\n* `NID <https://nid.sec.usace.army.mil>`__ for accessing the National Inventory of Dams\n web service,\n* `HCDN 2009 <https://www2.usgs.gov/science/cite-view.php?cite=2932>`__ for identifying sites\n where human activity affects the natural flow of the watercourse,\n* `NLCD 2021 <https://www.mrlc.gov/>`__ for land cover/land use, imperviousness\n descriptor, and canopy data. You can get data using both geometries and coordinates.\n* `WBD <https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/>`__ for accessing\n Hydrologic Unit (HU) polygon boundaries within the US (all HUC levels).\n* `SSEBop <https://earlywarning.usgs.gov/ssebop/modis/daily>`__ for daily actual\n evapotranspiration, for both single pixel and gridded data.\n* `Irrigation Withdrawals <https://doi.org/10.5066/P9FDLY8P>`__ for estimated\n monthly water use for irrigation by 12-digit hydrologic unit in the CONUS for 2015\n* `STN <https://stn.wim.usgs.gov/STNWeb/#/>`__ for access USGS Short-Term Network (STN)\n* `eHydro <https://navigation.usace.army.mil/Survey/Hydro>`__ for accessing USACE\n Hydrographic Surveys that includes topobathymetry data\n* `NFHL <https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS>`__ for accessing\n FEMA's National Flood Hazard Layer (NFHL) data.\n\nAlso, it includes several other functions:\n\n* ``interactive_map``: Interactive map for exploring NWIS stations within a bounding box.\n* ``cover_statistics``: Categorical statistics of land use/land cover data.\n* ``overland_roughness``: Estimate overland roughness from land use/land cover data.\n* ``streamflow_fillna``: Fill missing daily streamflow values with day-of-year averages.\n Streamflow observations must be at least for 10-year long.\n\nThe ``plot`` module includes two main functions:\n\n* ``signatures``: Hydrologic signature graphs.\n* ``cover_legends``: Official NLCD land cover legends for plotting a land cover dataset.\n* ``descriptor_legends``: Color map and legends for plotting an imperviousness descriptor dataset.\n\nThe ``helpers`` module includes:\n\n* ``nlcd_helper``: A roughness coefficients lookup table for each land cover and imperviousness\n descriptor type which is useful for overland flow routing among other applications.\n* ``nwis_error``: A dataframe for finding information about NWIS requests' errors.\n\nYou can find some example notebooks `here <https://github.com/hyriver/HyRiver-examples>`__.\n\nMoreover, under the hood, PyGeoHydro uses\n`PyGeoOGC <https://github.com/hyriver/pygeoogc>`__ and\n`AsyncRetriever <https://github.com/hyriver/async-retriever>`__ packages\nfor making requests in parallel and storing responses in chunks. This improves the\nreliability and speed of data retrieval significantly.\n\nYou can control the request/response caching behavior and verbosity of the package\nby setting the following environment variables:\n\n* ``HYRIVER_CACHE_NAME``: Path to the caching SQLite database for asynchronous HTTP\n requests. It defaults to ``./cache/aiohttp_cache.sqlite``\n* ``HYRIVER_CACHE_NAME_HTTP``: Path to the caching SQLite database for HTTP requests.\n It defaults to ``./cache/http_cache.sqlite``\n* ``HYRIVER_CACHE_EXPIRE``: Expiration time for cached requests in seconds. It defaults to\n one week.\n* ``HYRIVER_CACHE_DISABLE``: Disable reading/writing from/to the cache. The default is false.\n* ``HYRIVER_SSL_CERT``: Path to a SSL certificate file.\n\nFor example, in your code before making any requests you can do:\n\n.. code-block:: python\n\n import os\n\n os.environ[\"HYRIVER_CACHE_NAME\"] = \"path/to/aiohttp_cache.sqlite\"\n os.environ[\"HYRIVER_CACHE_NAME_HTTP\"] = \"path/to/http_cache.sqlite\"\n os.environ[\"HYRIVER_CACHE_EXPIRE\"] = \"3600\"\n os.environ[\"HYRIVER_CACHE_DISABLE\"] = \"true\"\n os.environ[\"HYRIVER_SSL_CERT\"] = \"path/to/cert.pem\"\n\nYou can also try using PyGeoHydro without installing\nit on your system by clicking on the binder badge. A Jupyter Lab\ninstance with the HyRiver stack pre-installed will be launched in your web browser, and you\ncan start coding!\n\nMoreover, requests for additional functionalities can be submitted via\n`issue tracker <https://github.com/hyriver/pygeohydro/issues>`__.\n\nCitation\n--------\nIf you use any of HyRiver packages in your research, we appreciate citations:\n\n.. code-block:: bibtex\n\n @article{Chegini_2021,\n author = {Chegini, Taher and Li, Hong-Yi and Leung, L. Ruby},\n doi = {10.21105/joss.03175},\n journal = {Journal of Open Source Software},\n month = {10},\n number = {66},\n pages = {1--3},\n title = {{HyRiver: Hydroclimate Data Retriever}},\n volume = {6},\n year = {2021}\n }\n\nInstallation\n------------\n\nYou can install PyGeoHydro using ``pip`` after installing ``libgdal`` on your system\n(for example, in Ubuntu run ``sudo apt install libgdal-dev``). Moreover, PyGeoHydro has an optional\ndependency for using persistent caching, ``requests-cache``. We highly recommend installing\nthis package as it can significantly speed up send/receive queries. You don't have to change\nanything in your code, since PyGeoHydro under-the-hood looks for ``requests-cache`` and\nif available, it will automatically use persistent caching:\n\n.. code-block:: console\n\n $ pip install pygeohydro\n\nAlternatively, PyGeoHydro can be installed from the ``conda-forge`` repository\nusing `Conda <https://docs.conda.io/en/latest/>`__:\n\n.. code-block:: console\n\n $ conda install -c conda-forge pygeohydro\n\nQuick start\n-----------\nWe can obtain river topobathymetry data using the ``EHydro`` class. We can subset\nthe dataset either using a geometry or a bounding box, based on their ID, or SQL query:\n\n.. code-block:: python\n\n from pygeohydro import EHydro\n\n ehydro = EHydro(\"points\")\n topobathy = ehydro.bygeom((-122.53, 45.57, -122.52, 45.59))\n\nWe can explore the available NWIS stations within a bounding box using ``interactive_map``\nfunction. It returns an interactive map and by clicking on a station some of the most\nimportant properties of stations are shown.\n\n.. code-block:: python\n\n import pygeohydro as gh\n\n bbox = (-69.5, 45, -69, 45.5)\n gh.interactive_map(bbox)\n\n.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/interactive_map.png\n :target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nwis.ipynb\n :alt: Interactive Map\n\nWe can select all the stations within this boundary box that have daily mean streamflow data from\n``2000-01-01`` to ``2010-12-31``:\n\n.. code-block:: python\n\n from pygeohydro import NWIS\n\n nwis = NWIS()\n query = {\n \"bBox\": \",\".join(f\"{b:.06f}\" for b in bbox),\n \"hasDataTypeCd\": \"dv\",\n \"outputDataTypeCd\": \"dv\",\n }\n info_box = nwis.get_info(query)\n dates = (\"2000-01-01\", \"2010-12-31\")\n stations = info_box[\n (info_box.begin_date <= dates[0]) & (info_box.end_date >= dates[1])\n ].site_no.tolist()\n\nThen, we can get the daily streamflow data in mm/day (by default the values are in cms)\nand plot them:\n\n.. code-block:: python\n\n from pygeohydro import plot\n\n qobs = nwis.get_streamflow(stations, dates, mmd=True)\n plot.signatures(qobs)\n\nBy default, ``get_streamflow`` returns a ``pandas.DataFrame`` that has a ``attrs`` method\ncontaining metadata for all the stations. You can access it like so ``qobs.attrs``.\nMoreover, we can get the same data as ``xarray.Dataset`` as follows:\n\n.. code-block:: python\n\n qobs_ds = nwis.get_streamflow(stations, dates, to_xarray=True)\n\nThis ``xarray.Dataset`` has two dimensions: ``time`` and ``station_id``. It has\n10 variables including ``discharge`` with two dimensions while other variables\nthat are station attitudes are one dimensional.\n\nWe can also get instantaneous streamflow data using ``get_streamflow``. This method assumes\nthat the input dates are in UTC time zone and returns the data in UTC time zone as well.\n\n.. code-block:: python\n\n date = (\"2005-01-01 12:00\", \"2005-01-12 15:00\")\n qobs = nwis.get_streamflow(\"01646500\", date, freq=\"iv\")\n\nWe can query USGS stations of type \"stream\" in Arizona using SensorThings API\nas follows:\n\n.. code-block:: python\n\n odata = {\n \"filter\": \"properties/monitoringLocationType eq 'Stream' and properties/stateFIPS eq 'US:04'\",\n }\n df = sensor.query_byodata(odata)\n\nIrrigation withdrawals data can be obtained as follows:\n\n.. code-block:: python\n\n irr = gh.irrigation_withdrawals()\n\nWe can get the CAMELS dataset as a ``geopandas.GeoDataFrame`` that includes geometry and\nbasin-level attributes of 671 natural watersheds within CONUS and their streamflow\nobservations between 1980-2014 as a ``xarray.Dataset``, like so:\n\n.. code-block:: python\n\n attrs, qobs = gh.get_camels()\n\nThe ``WaterQuality`` has a number of convenience methods to retrieve data from the\nweb service. Since there are many parameter combinations that can be\nused to retrieve data, a general method is also provided to retrieve data from\nany of the valid endpoints. You can use ``get_json`` to retrieve stations info\nas a ``geopandas.GeoDataFrame`` or ``get_csv`` to retrieve stations data as a\n``pandas.DataFrame``. You can construct a dictionary of the parameters and pass\nit to one of these functions. For more information on the parameters, please\nconsult the `Water Quality Data documentation <https://www.waterqualitydata.us/webservices_documentation>`__.\nFor example, let's find all the stations within a bounding box that have Caffeine data:\n\n.. code-block:: python\n\n from pynhd import WaterQuality\n\n bbox = (-92.8, 44.2, -88.9, 46.0)\n kwds = {\"characteristicName\": \"Caffeine\"}\n wq = WaterQuality()\n stations = wq.station_bybbox(bbox, kwds)\n\nOr the same criterion but within a 30-mile radius of a point:\n\n.. code-block:: python\n\n stations = wq.station_bydistance(-92.8, 44.2, 30, kwds)\n\nThen we can get the data for all these stations the data like this:\n\n.. code-block:: python\n\n sids = stations.MonitoringLocationIdentifier.tolist()\n caff = wq.data_bystation(sids, kwds)\n\n.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/water_quality.png\n :target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/water_quality.ipynb\n :alt: Water Quality\n\nMoreover, we can get land use/land cove data using ``nlcd_bygeom`` or ``nlcd_bycoods`` functions,\npercentages of land cover types using ``cover_statistics``, and overland roughness using\n``overland_roughness``. The ``nlcd_bycoords`` function returns a ``geopandas.GeoDataFrame``\nwith the NLCD layers as columns and input coordinates as the ``geometry`` column. Moreover,\nthe ``nlcd_bygeom`` function accepts both a single geometry or a ``geopandas.GeoDataFrame``\nas the input.\n\n.. code-block:: python\n\n from pynhd import NLDI\n\n basins = NLDI().get_basins([\"01031450\", \"01318500\", \"01031510\"])\n lulc = gh.nlcd_bygeom(basins, 100, years={\"cover\": [2016, 2019]})\n stats = gh.cover_statistics(lulc[\"01318500\"].cover_2016)\n roughness = gh.overland_roughness(lulc[\"01318500\"].cover_2019)\n\n.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/lulc.png\n :target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nlcd.ipynb\n :alt: Land Use/Land Cover\n\nNext, let's use ``ssebopeta_bygeom`` to get actual ET data for a basin. Note that there's a\n``ssebopeta_bycoords`` function that returns an ETA time series for a single coordinate.\n\n.. code-block:: python\n\n geometry = NLDI().get_basins(\"01315500\").geometry[0]\n eta = gh.ssebopeta_bygeom(geometry, dates=(\"2005-10-01\", \"2005-10-05\"))\n\n.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/eta.png\n :target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/ssebop.ipynb\n :alt: Actual ET\n\nAdditionally, we can pull all the US dams data using ``NID``. Let's get dams that are within this\nbounding box and have a maximum storage larger than 200 acre-feet.\n\n.. code-block:: python\n\n nid = NID()\n dams = nid.get_bygeom((-65.77, 43.07, -69.31, 45.45), 4326)\n dams = nid.inventory_byid(dams.id.to_list())\n dams = dams[dams.maxStorage > 200]\n\nWe can get also all dams within CONUS with maximum storage larger than 2500 acre-feet:\n\n.. code-block:: python\n\n conus_geom = gh.get_us_states(\"contiguous\")\n\n dam_list = nid.get_byfilter([{\"maxStorage\": [\"[2500 +inf]\"]}])\n dams = nid.inventory_byid(dam_list[0].id.to_list(), stage_nid=True)\n\n conus_dams = dams[dams.stateKey.isin(conus_geom.STUSPS)].reset_index(drop=True)\n\n.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/dams.png\n :target: https://github.com/hyriver/HyRiver-examples/blob/main/notebooks/nid.ipynb\n :alt: Dams\n\n\nThe ``WBD`` class allows us to get Hydrologic Unit (HU) polygon boundaries. Let's\nget the two Hudson HUC4s:\n\n.. code-block:: python\n\n from pygeohydro import WBD\n\n wbd = WBD(\"huc4\")\n hudson = wbd.byids(\"huc4\", [\"0202\", \"0203\"])\n\n\nThe ``NFHL`` class allows us to retrieve FEMA's National Flood Hazard Layer (NFHL) data.\nLet's get the cross-section data for a small region in Vermont:\n\n.. code-block:: python\n\n from pygeohydro import NFHL\n\n nfhl = NFHL(\"NFHL\", \"cross-sections\")\n gdf_xs = nfhl.bygeom((-73.42, 43.28, -72.9, 43.52), geo_crs=4269)\n\n\nContributing\n------------\n\nContributions are very welcomed. Please read\n`CONTRIBUTING.rst <https://github.com/hyriver/pygeoogc/blob/main/CONTRIBUTING.rst>`__\nfile for instructions.\n\nCredits\n-------\n\nThis package was created based on the `audreyr/cookiecutter-pypackage`__ project template.\n\n__ https://github.com/audreyr/cookiecutter-pypackage\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Access geospatial web services that offer hydrological data",
"version": "0.19.0",
"project_urls": {
"CI": "https://github.com/hyriver/pygeohydro/actions",
"Changelog": "https://docs.hyriver.io/changelogs/pygeohydro.html",
"Homepage": "https://docs.hyriver.io/readme/pygeohydro.html",
"Issues": "https://github.com/hyriver/pygeohydro/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3023eaae51103db812e233fd425a9154b9de5c1f7a62bdaf3c4deccb3983e176",
"md5": "c3510e24d3c1b10cdec4a9e050a28f0a",
"sha256": "c5b594d194e416d52fedb404427afe72389163fb527aad4392585522d95ade11"
},
"downloads": -1,
"filename": "pygeohydro-0.19.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c3510e24d3c1b10cdec4a9e050a28f0a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 61787,
"upload_time": "2025-01-18T02:51:23",
"upload_time_iso_8601": "2025-01-18T02:51:23.374178Z",
"url": "https://files.pythonhosted.org/packages/30/23/eaae51103db812e233fd425a9154b9de5c1f7a62bdaf3c4deccb3983e176/pygeohydro-0.19.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1b9345edbb9f9e84753d6be730776e10b74d6d592715668a98dbf5d7481fdd99",
"md5": "376412f3e68b00a26bfe5198379e2e16",
"sha256": "47755c835e1feb4c34746e51facbdb3e29065fad5de9b840c7e1c45fb404ebbd"
},
"downloads": -1,
"filename": "pygeohydro-0.19.0.tar.gz",
"has_sig": false,
"md5_digest": "376412f3e68b00a26bfe5198379e2e16",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 85660,
"upload_time": "2025-01-18T02:51:26",
"upload_time_iso_8601": "2025-01-18T02:51:26.259547Z",
"url": "https://files.pythonhosted.org/packages/1b/93/45edbb9f9e84753d6be730776e10b74d6d592715668a98dbf5d7481fdd99/pygeohydro-0.19.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 02:51:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hyriver",
"github_project": "pygeohydro",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pygeohydro"
}