# pygeoquery
[![PyPI package](https://img.shields.io/badge/pip%20install-pygeoquery-brightgreen)](https://pypi.org/project/pygeoquery/)
[![Version](https://img.shields.io/pypi/v/pygeoquery)](https://pypi.org/project/pygeoquery/0.1.0/)
[![License](https://img.shields.io/github/license/booncol/pygeoquery)](https://github.com/booncol/pygeoquery/blob/main/LICENSE)
Perform geospatial queries on a Firestore database with ease.
pygeoquery allows you to retrieve documents within a certain radius of a given geographic point. It utilizes geohashes for efficient querying.
## Features
- query Firestore collections by geographic proximity.
- efficiently filter and retrieve documents within a specified radius.
- flexible and customizable query building.
- utilizes geohashes for high-performance geospatial queries.
- supports both synchronous and asynchronous Firestore clients.
## Installation
You can install the library using pip:
```bash
pip install pygeoquery
```
## Prerequisites
Before using this library, ensure that each document in the searched Firestore collection includes a field called **"geohash"** containing a geohash value generated from the geographical coordinates. This geohash field is essential for the library to perform accurate geospatial queries.
![Document preview](https://github.com/booncol/pygeoquery/blob/main/document_preview.png?raw=true)
To generate geohashes, you can use Python libraries such as:
- [pygeohash](https://pypi.org/project/pygeohash/): Provides functions for decoding and encoding geohashes.
- [geohashr](https://pypi.org/project/geohashr/): Just another Python geohashing library.
## Usage
1) Initialize Firebase
```python
from firebase_admin import initialize_app, credentials
from google.cloud import firestore
# Initialize Firebase
cred = credentials.Certificate("path/to/your/serviceAccountKey.json")
initialize_app(cred, {"projectId": "your-project-id"})
```
2) Create Firestore client
```python
# Synchronous client
db = firestore.Client()
```
or
```python
# Asynchronous client
db = firestore.AsyncClient()
```
3) Define callback functions
```python
# Define a GeoPointFromCallback
def geopoint_from_callback(data):
return data.get("location") # Replace with your data structure
# Define query builder callback function (optional). This function allows you to customize your query.
def query_builder_callback(query):
return query.where("property", "==", "value") # Customize your query
```
4) Create a GeoCollectionReference or GeoAsyncCollectionReference
```python
# Create a GeoCollectionReference
geocollection = GeoCollectionReference(db.collection("your_collection"))
```
or
```python
# Create a GeoAsyncCollectionReference (asynchronous client only)
geocollection = GeoAsyncCollectionReference(db.collection("your_collection"))
```
5) Fetch documents within a radius of a GeoPoint
```python
# Fetch documents within a radius of a GeoPoint
center_point = GeoPoint(latitude, longitude)
radius_km = 10.0
result = geocollection.fetch_within(
center_point,
radius_km,
geopoint_from_callback,
query_builder_callback
)
# Process the retrieved documents
for document in result:
print(document)
```
If you are using the asynchronous client, use the `await` keyword to wait for the result.
```python
result = await geocollection.fetch_within(
center_point,
radius_km,
geopoint_from_callback,
query_builder_callback
)
```
## Acknowledgments
This project is inspired by the [geoflutterfire_plus](https://github.com/KosukeSaigusa/geoflutterfire_plus) Flutter module by [Kosuke Saigusa](https://github.com/kosukesaigusa), which provides similar geospatial querying functionality for Firestore databases in the Flutter framework.
## License
This project is licensed under the MIT License - see the [LICENSE](https://github.com/booncol/pygeoquery/blob/main/LICENSE) file for details.
## Contributing
Please read [CONTRIBUTING.md](https://github.com/booncol/pygeoquery/blob/main/CONTRIBUTING.md) for details on my code of conduct, and the process for submitting pull requests to me.
## Contact
If you have questions or need assistance, feel free to contact me.
**Happy querying!**
Raw data
{
"_id": null,
"home_page": "https://github.com/booncol/pygeoquery",
"name": "pygeoquery",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "",
"keywords": "firestore geoquery geospatial geofire geohash",
"author": "Lukasz Majda",
"author_email": "lukasz.majda@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/20/86/b38f4ef5d2b31c28d0541df9439a020925b3ed1f68ef6c3a80e791b1a39e/pygeoquery-0.1.6.tar.gz",
"platform": null,
"description": "# pygeoquery\n\n[![PyPI package](https://img.shields.io/badge/pip%20install-pygeoquery-brightgreen)](https://pypi.org/project/pygeoquery/)\n[![Version](https://img.shields.io/pypi/v/pygeoquery)](https://pypi.org/project/pygeoquery/0.1.0/)\n[![License](https://img.shields.io/github/license/booncol/pygeoquery)](https://github.com/booncol/pygeoquery/blob/main/LICENSE)\n\nPerform geospatial queries on a Firestore database with ease.\n\npygeoquery allows you to retrieve documents within a certain radius of a given geographic point. It utilizes geohashes for efficient querying.\n\n## Features\n- query Firestore collections by geographic proximity.\n- efficiently filter and retrieve documents within a specified radius.\n- flexible and customizable query building.\n- utilizes geohashes for high-performance geospatial queries.\n- supports both synchronous and asynchronous Firestore clients.\n\n## Installation\nYou can install the library using pip:\n\n```bash\npip install pygeoquery\n```\n\n## Prerequisites\n\nBefore using this library, ensure that each document in the searched Firestore collection includes a field called **\"geohash\"** containing a geohash value generated from the geographical coordinates. This geohash field is essential for the library to perform accurate geospatial queries.\n\n![Document preview](https://github.com/booncol/pygeoquery/blob/main/document_preview.png?raw=true) \n\nTo generate geohashes, you can use Python libraries such as:\n\n- [pygeohash](https://pypi.org/project/pygeohash/): Provides functions for decoding and encoding geohashes.\n- [geohashr](https://pypi.org/project/geohashr/): Just another Python geohashing library.\n\n\n## Usage\n\n1) Initialize Firebase\n\n ```python\n from firebase_admin import initialize_app, credentials\n from google.cloud import firestore\n \n \n # Initialize Firebase\n cred = credentials.Certificate(\"path/to/your/serviceAccountKey.json\")\n initialize_app(cred, {\"projectId\": \"your-project-id\"})\n ```\n\n2) Create Firestore client\n\n ```python\n # Synchronous client\n db = firestore.Client()\n ```\n or \n\n ```python\n # Asynchronous client\n db = firestore.AsyncClient()\n ```\n\n3) Define callback functions\n\n ```python\n # Define a GeoPointFromCallback\n def geopoint_from_callback(data):\n return data.get(\"location\") # Replace with your data structure\n \n # Define query builder callback function (optional). This function allows you to customize your query.\n def query_builder_callback(query):\n return query.where(\"property\", \"==\", \"value\") # Customize your query\n ```\n\n4) Create a GeoCollectionReference or GeoAsyncCollectionReference\n\n ```python\n # Create a GeoCollectionReference\n geocollection = GeoCollectionReference(db.collection(\"your_collection\"))\n ```\n \n or\n\n ```python\n # Create a GeoAsyncCollectionReference (asynchronous client only)\n geocollection = GeoAsyncCollectionReference(db.collection(\"your_collection\"))\n ```\n\n5) Fetch documents within a radius of a GeoPoint\n\n ```python\n # Fetch documents within a radius of a GeoPoint\n center_point = GeoPoint(latitude, longitude)\n radius_km = 10.0\n \n result = geocollection.fetch_within(\n center_point,\n radius_km,\n geopoint_from_callback,\n query_builder_callback\n )\n \n # Process the retrieved documents\n for document in result:\n print(document)\n ```\n\n If you are using the asynchronous client, use the `await` keyword to wait for the result.\n\n ```python\n result = await geocollection.fetch_within(\n center_point,\n radius_km,\n geopoint_from_callback,\n query_builder_callback\n )\n ``` \n\n## Acknowledgments\nThis project is inspired by the [geoflutterfire_plus](https://github.com/KosukeSaigusa/geoflutterfire_plus) Flutter module by [Kosuke Saigusa](https://github.com/kosukesaigusa), which provides similar geospatial querying functionality for Firestore databases in the Flutter framework.\n\n## License\nThis project is licensed under the MIT License - see the [LICENSE](https://github.com/booncol/pygeoquery/blob/main/LICENSE) file for details.\n\n## Contributing\nPlease read [CONTRIBUTING.md](https://github.com/booncol/pygeoquery/blob/main/CONTRIBUTING.md) for details on my code of conduct, and the process for submitting pull requests to me.\n\n## Contact\nIf you have questions or need assistance, feel free to contact me.\n\n**Happy querying!**\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Geoqueries on Firestore Database for Python",
"version": "0.1.6",
"project_urls": {
"Homepage": "https://github.com/booncol/pygeoquery"
},
"split_keywords": [
"firestore",
"geoquery",
"geospatial",
"geofire",
"geohash"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2086b38f4ef5d2b31c28d0541df9439a020925b3ed1f68ef6c3a80e791b1a39e",
"md5": "46fb73ac5445091c2ac66af24653e303",
"sha256": "d521064f8c35dbe26a730ce0fa0707a25e70c25c8c3826f3229131b26f827010"
},
"downloads": -1,
"filename": "pygeoquery-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "46fb73ac5445091c2ac66af24653e303",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 8182,
"upload_time": "2023-10-30T22:24:20",
"upload_time_iso_8601": "2023-10-30T22:24:20.965363Z",
"url": "https://files.pythonhosted.org/packages/20/86/b38f4ef5d2b31c28d0541df9439a020925b3ed1f68ef6c3a80e791b1a39e/pygeoquery-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-30 22:24:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "booncol",
"github_project": "pygeoquery",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pygeoquery"
}