pyhail


Namepyhail JSON
Version 3.1.1 PyPI version JSON
download
home_pagehttps://github.com/joshuass/pyhail
SummaryPython hail retreivals
upload_time2024-11-21 04:11:30
maintainerNone
docs_urlNone
authorJoshua Soderholm
requires_python>=3.9
licenseNone
keywords radar weather meteorology calibration
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Python Hail Retrieval Toolkit (pyhail) ⛈️📡🧊

This toolkit provides a collection of hail retrieval techniques for weather radar data.

### Library Dependencies
- numpy
- scipy
- numba

### Supporter radar file readers
- [PyART](https://github.com/ARM-DOE/pyart)
- [PyOdim](https://github.com/vlouf/pyodim)

### Notebook plotting Dependencies
- matplotlib

### Hail Retrivals
- *Hail Size Discrimination Algorithm - HSDA ([Ortega et al. 2016](https://journals.ametsoc.org/doi/10.1175/JAMC-D-15-0203.1))
- Hail Differential Reflectivity - HDR ([Depue et al. 2007](https://doi.org/10.1175/JAM2529.1))
- Maximum Expected Size of Hail - MESH witt1998 ([Witt et al. 1998](https://journals.ametsoc.org/doi/10.1175/1520-0434%281998%29013%3C0286%3AAEHDAF%3E2.0.CO%3B2))
- Maximum Expected Size of Hail - MESH mh2019_75/mh2019_95 ([Murillo and Homeyer 2019](https://journals.ametsoc.org/view/journals/apme/58/5/jamc-d-18-0247.1.xml))
- Accumulated Hail - hAcc ([Wallace et al. 2019](https://journals.ametsoc.org/view/journals/wefo/34/1/waf-d-18-0053_1.xml))

*Note that the Q confidence vector from Park et al. 2009 has not been implemented and all pixels are assigned a value of q=1.

MESH is implemented for both pyart radar (PPI) and grid (Cartesian) data!

### Install using pypi

`pip install pyhail`

### Install from source
To install pyhail, you can either download and unpack the zip file of the source code or use git to checkout the repository:

`git clone git@github.com:joshua-wx/pyhail.git`

To install in your home directory, use:

`python setup.py install --user`

### Use
- [Example Notebook](https://github.com/joshua-wx/pyhail/blob/master/notebooks/example.ipynb)

This project is maintained by Joshua Soderholm. Any problems? Please use the Github issue tracker.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/joshuass/pyhail",
    "name": "pyhail",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "radar, weather, meteorology, calibration",
    "author": "Joshua Soderholm",
    "author_email": "Joshua Soderholm <joshua.soderholm@bom.gov.au>",
    "download_url": "https://files.pythonhosted.org/packages/e7/ae/780a6edab20b4138815eb481ebdc0a2a785c5f11429acc965367214d0e33/pyhail-3.1.1.tar.gz",
    "platform": null,
    "description": "# Python Hail Retrieval Toolkit (pyhail) \u26c8\ufe0f\ud83d\udce1\ud83e\uddca\n\nThis toolkit provides a collection of hail retrieval techniques for weather radar data.\n\n### Library Dependencies\n- numpy\n- scipy\n- numba\n\n### Supporter radar file readers\n- [PyART](https://github.com/ARM-DOE/pyart)\n- [PyOdim](https://github.com/vlouf/pyodim)\n\n### Notebook plotting Dependencies\n- matplotlib\n\n### Hail Retrivals\n- *Hail Size Discrimination Algorithm - HSDA ([Ortega et al. 2016](https://journals.ametsoc.org/doi/10.1175/JAMC-D-15-0203.1))\n- Hail Differential Reflectivity - HDR ([Depue et al. 2007](https://doi.org/10.1175/JAM2529.1))\n- Maximum Expected Size of Hail - MESH witt1998 ([Witt et al. 1998](https://journals.ametsoc.org/doi/10.1175/1520-0434%281998%29013%3C0286%3AAEHDAF%3E2.0.CO%3B2))\n- Maximum Expected Size of Hail - MESH mh2019_75/mh2019_95 ([Murillo and Homeyer 2019](https://journals.ametsoc.org/view/journals/apme/58/5/jamc-d-18-0247.1.xml))\n- Accumulated Hail - hAcc ([Wallace et al. 2019](https://journals.ametsoc.org/view/journals/wefo/34/1/waf-d-18-0053_1.xml))\n\n*Note that the Q confidence vector from Park et al. 2009 has not been implemented and all pixels are assigned a value of q=1.\n\nMESH is implemented for both pyart radar (PPI) and grid (Cartesian) data!\n\n### Install using pypi\n\n`pip install pyhail`\n\n### Install from source\nTo install pyhail, you can either download and unpack the zip file of the source code or use git to checkout the repository:\n\n`git clone git@github.com:joshua-wx/pyhail.git`\n\nTo install in your home directory, use:\n\n`python setup.py install --user`\n\n### Use\n- [Example Notebook](https://github.com/joshua-wx/pyhail/blob/master/notebooks/example.ipynb)\n\nThis project is maintained by Joshua Soderholm. Any problems? Please use the Github issue tracker.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python hail retreivals",
    "version": "3.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/joshua-wx/pyhail/issues",
        "Homepage": "https://github.com/joshua-wx/pyhail"
    },
    "split_keywords": [
        "radar",
        " weather",
        " meteorology",
        " calibration"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "de3cf9e1e7e821ef76d73a8df3f4dada80ff7c82fb1d38624e20c4fc2dff74e3",
                "md5": "6d023afc85958509d7c01fac9d76996a",
                "sha256": "d45e97dbba3dcc3e4e88569b8d6b934f7e28928d5e0239f098af17552f045feb"
            },
            "downloads": -1,
            "filename": "pyhail-3.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6d023afc85958509d7c01fac9d76996a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 24888,
            "upload_time": "2024-11-21T04:11:27",
            "upload_time_iso_8601": "2024-11-21T04:11:27.793568Z",
            "url": "https://files.pythonhosted.org/packages/de/3c/f9e1e7e821ef76d73a8df3f4dada80ff7c82fb1d38624e20c4fc2dff74e3/pyhail-3.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e7ae780a6edab20b4138815eb481ebdc0a2a785c5f11429acc965367214d0e33",
                "md5": "0b6727b71435ae7b14d0e07327ecd7da",
                "sha256": "55c4eca4bd57d3619f6882a7d9aa2f5ea18b24311ea881d6c41347b52a0a1fe7"
            },
            "downloads": -1,
            "filename": "pyhail-3.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0b6727b71435ae7b14d0e07327ecd7da",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 377960,
            "upload_time": "2024-11-21T04:11:30",
            "upload_time_iso_8601": "2024-11-21T04:11:30.272322Z",
            "url": "https://files.pythonhosted.org/packages/e7/ae/780a6edab20b4138815eb481ebdc0a2a785c5f11429acc965367214d0e33/pyhail-3.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-21 04:11:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "joshuass",
    "github_project": "pyhail",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyhail"
}
        
Elapsed time: 4.09717s