Name | pyimagej JSON |
Version |
1.6.0
JSON |
| download |
home_page | None |
Summary | Python wrapper for ImageJ |
upload_time | 2025-01-14 19:57:19 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | Apache-2.0 |
keywords |
java
imagej
imagej2
fiji
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# PyImageJ: Python wrapper for ImageJ2
[![Image.sc Forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftags%2Fpyimagej.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/pyimagej)
[![Build Status](https://github.com/imagej/pyimagej/actions/workflows/build.yml/badge.svg?branch=main)](https://github.com/imagej/pyimagej/actions/workflows/build.yml)
[![codecov](https://codecov.io/gh/imagej/pyimagej/branch/main/graph/badge.svg?token=9z6AYgHINK)](https://codecov.io/gh/imagej/pyimagej)
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/imagej/pyimagej/main)
PyImageJ provides a set of wrapper functions for integration between [ImageJ2]
and Python. It also supports the original [ImageJ] API and data structures.
A major advantage of this approach is the ability to combine ImageJ and ImageJ2
with other tools available from the Python software ecosystem, including NumPy,
SciPy, scikit-image, [CellProfiler], [OpenCV], [ITK] and many more.
## Quick Start
Jump into the [documentation and tutorials](https://pyimagej.readthedocs.io/) to get started!
## System Requirements
### Hardware Requirements
PyImageJ requires at minimum a standard computer with enough RAM and CPU
performance to support the workflow operations defined by the user. While
PyImageJ will run on a range of hardware, we recommend the following RAM
and CPU specifications:
- RAM: >= 2 GB (64 MB minimum)
- CPU: >= 1 core
Notably, PyImageJ can be installed and used on server infrastructure for
large scale image processing.
### OS Requirements
PyImageJ has been tested on the following operating systems:
- Linux (Ubuntu 20.04 LTS)
- Windows
- macOS
### Software Requirements
PyImageJ requires the following packages:
* Python >= 3.7
* [imglyb] >= 2.1.0
* [jgo] >= 1.0.3
* [JPype] >= 1.3.0
* [labeling] >= 0.1.14
* [matplotlib] \(optional, for `ij.py.show` function only)
* [NumPy]
* [scyjava] >= 1.8.0
* [xarray]
PyImageJ will not function properly if dependency versions are too old.
In addition, PyImageJ requires [OpenJDK] and [Maven] to be installed.
## Installation
On Mac and Linux, PyImageJ can be installed using [Conda]+[Mamba]. Here is how to create
and activate a new conda environment with PyImageJ available:
```
conda install mamba -n base -c conda-forge
mamba create -n pyimagej -c conda-forge pyimagej openjdk=8
conda activate pyimagej
```
You can also `pip install pyimagej`, but will then need to install OpenJDK and Maven manually.
Installation time takes approximately 20 seconds. Initializing PyImageJ
takes an additional ~30 seconds to ~2-3 minutes (depending on bandwidth)
while it downloads and caches the needed Java libraries.
For detailed installation instructions and requirements, see
[Installation](https://pyimagej.readthedocs.io/en/latest/Install.html).
## Usage
The first step when using PyImageJ is to create an ImageJ2 gateway.
This gateway can point to any official release of ImageJ2 or to a local
installation. Using the gateway, you have full access to the ImageJ2 API,
plus utility functions for translating between Python (NumPy, xarray,
pandas, etc.) and Java (ImageJ2, ImgLib2, etc.) structures.
For instructions on how to start up the gateway for various settings, see
[How to initialize PyImageJ](https://pyimagej.readthedocs.io/en/latest/Initialization.html).
Here is an example of opening an image using ImageJ2 and displaying it:
```python
# Create an ImageJ2 gateway with the newest available version of ImageJ2.
import imagej
ij = imagej.init()
# Load an image.
image_url = 'https://imagej.net/images/clown.jpg'
jimage = ij.io().open(image_url)
# Convert the image from ImageJ2 to xarray, a package that adds
# labeled datasets to numpy (http://xarray.pydata.org/en/stable/).
image = ij.py.from_java(jimage)
# Display the image (backed by matplotlib).
ij.py.show(image, cmap='gray')
```
For more, see the
[tutorial notebooks](https://pyimagej.readthedocs.io/en/latest/notebooks.html).
## API Reference
For a complete reference of the PyImageJ API, please see the
[API Reference](https://pyimagej.readthedocs.io/en/latest/api.html).
## Getting Help
[The Scientific Community Image Forum](https://forum.image.sc/tag/pyimagej)
is the best place to get general help on usage of PyImageJ, ImageJ2, and any
other image processing tasks. Bugs can be reported to the PyImageJ GitHub
[issue tracker](https://github.com/imagej/pyimagej/issues).
## Contributing
All contributions, reports, and ideas are welcome. Contribution is done
via pull requests onto the pyimagej repository.
Most development discussion takes place on the pyimagej
[GitHub repository](https://github.com/imagej/pyimagej).
You can also reach the developers at the
[Image.sc Zulip chat](https://imagesc.zulipchat.com/#narrow/stream/328100-scyjava).
For details on how to develop the PyImageJ codebase, see
[Development.md](https://pyimagej.readthedocs.io/en/latest/Development.html).
------------------------------------------------------------------------------
[ImageJ2]: https://imagej.net/software/imagej2
[ImageJ]: https://imagej.net/software/imagej
[CellProfiler]: https://imagej.net/software/cellprofiler
[OpenCV]: https://imagej.net/software/opencv
[ITK]: https://imagej.net/software/itk
[imglyb]: https://github.com/imglib/imglyb
[jgo]: https://github.com/scijava/jgo
[JPype]: https://jpype.readthedocs.io/
[labeling]: https://github.com/Labelings/Labeling
[matplotlib]: https://matplotlib.org/
[NumPy]: https://numpy.org/
[scyjava]: https://github.com/scijava/scyjava
[xarray]: https://docs.xarray.dev/
[OpenJDK]: https://en.wikipedia.org/wiki/OpenJDK
[Maven]: https://maven.apache.org/
[Conda]: https://conda.io/
[Mamba]: https://mamba.readthedocs.io/
Raw data
{
"_id": null,
"home_page": null,
"name": "pyimagej",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "java, imagej, imagej2, fiji",
"author": null,
"author_email": "ImageJ2 developers <ctrueden@wisc.edu>",
"download_url": "https://files.pythonhosted.org/packages/69/13/69681031c3aec5ff1aa31de18fba827ee587f955bfafd0479bb4c6ca4fb9/pyimagej-1.6.0.tar.gz",
"platform": "any",
"description": "# PyImageJ: Python wrapper for ImageJ2\n\n[![Image.sc Forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftags%2Fpyimagej.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/pyimagej)\n[![Build Status](https://github.com/imagej/pyimagej/actions/workflows/build.yml/badge.svg?branch=main)](https://github.com/imagej/pyimagej/actions/workflows/build.yml)\n[![codecov](https://codecov.io/gh/imagej/pyimagej/branch/main/graph/badge.svg?token=9z6AYgHINK)](https://codecov.io/gh/imagej/pyimagej)\n[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/imagej/pyimagej/main)\n\nPyImageJ provides a set of wrapper functions for integration between [ImageJ2]\nand Python. It also supports the original [ImageJ] API and data structures.\n\nA major advantage of this approach is the ability to combine ImageJ and ImageJ2\nwith other tools available from the Python software ecosystem, including NumPy,\nSciPy, scikit-image, [CellProfiler], [OpenCV], [ITK] and many more.\n\n## Quick Start\n\nJump into the [documentation and tutorials](https://pyimagej.readthedocs.io/) to get started!\n\n## System Requirements\n\n### Hardware Requirements\n\nPyImageJ requires at minimum a standard computer with enough RAM and CPU\nperformance to support the workflow operations defined by the user. While\nPyImageJ will run on a range of hardware, we recommend the following RAM\nand CPU specifications:\n\n- RAM: >= 2 GB (64 MB minimum)\n- CPU: >= 1 core\n\nNotably, PyImageJ can be installed and used on server infrastructure for\nlarge scale image processing.\n\n### OS Requirements\n\nPyImageJ has been tested on the following operating systems:\n\n- Linux (Ubuntu 20.04 LTS)\n- Windows\n- macOS\n\n### Software Requirements\n\nPyImageJ requires the following packages:\n\n* Python >= 3.7\n* [imglyb] >= 2.1.0\n* [jgo] >= 1.0.3\n* [JPype] >= 1.3.0\n* [labeling] >= 0.1.14\n* [matplotlib] \\(optional, for `ij.py.show` function only)\n* [NumPy]\n* [scyjava] >= 1.8.0\n* [xarray]\n\nPyImageJ will not function properly if dependency versions are too old.\n\nIn addition, PyImageJ requires [OpenJDK] and [Maven] to be installed.\n\n## Installation\n\nOn Mac and Linux, PyImageJ can be installed using [Conda]+[Mamba]. Here is how to create\nand activate a new conda environment with PyImageJ available:\n\n```\nconda install mamba -n base -c conda-forge\nmamba create -n pyimagej -c conda-forge pyimagej openjdk=8\nconda activate pyimagej\n```\n\nYou can also `pip install pyimagej`, but will then need to install OpenJDK and Maven manually.\n\nInstallation time takes approximately 20 seconds. Initializing PyImageJ\ntakes an additional ~30 seconds to ~2-3 minutes (depending on bandwidth)\nwhile it downloads and caches the needed Java libraries.\n\nFor detailed installation instructions and requirements, see\n[Installation](https://pyimagej.readthedocs.io/en/latest/Install.html).\n\n## Usage\n\nThe first step when using PyImageJ is to create an ImageJ2 gateway.\nThis gateway can point to any official release of ImageJ2 or to a local\ninstallation. Using the gateway, you have full access to the ImageJ2 API,\nplus utility functions for translating between Python (NumPy, xarray,\npandas, etc.) and Java (ImageJ2, ImgLib2, etc.) structures.\n\nFor instructions on how to start up the gateway for various settings, see\n[How to initialize PyImageJ](https://pyimagej.readthedocs.io/en/latest/Initialization.html).\n\nHere is an example of opening an image using ImageJ2 and displaying it:\n\n```python\n# Create an ImageJ2 gateway with the newest available version of ImageJ2.\nimport imagej\nij = imagej.init()\n\n# Load an image.\nimage_url = 'https://imagej.net/images/clown.jpg'\njimage = ij.io().open(image_url)\n\n# Convert the image from ImageJ2 to xarray, a package that adds\n# labeled datasets to numpy (http://xarray.pydata.org/en/stable/).\nimage = ij.py.from_java(jimage)\n\n# Display the image (backed by matplotlib).\nij.py.show(image, cmap='gray')\n```\n\nFor more, see the\n[tutorial notebooks](https://pyimagej.readthedocs.io/en/latest/notebooks.html).\n\n## API Reference\n\nFor a complete reference of the PyImageJ API, please see the\n[API Reference](https://pyimagej.readthedocs.io/en/latest/api.html).\n\n## Getting Help\n\n[The Scientific Community Image Forum](https://forum.image.sc/tag/pyimagej)\nis the best place to get general help on usage of PyImageJ, ImageJ2, and any\nother image processing tasks. Bugs can be reported to the PyImageJ GitHub\n[issue tracker](https://github.com/imagej/pyimagej/issues).\n\n## Contributing\n\nAll contributions, reports, and ideas are welcome. Contribution is done\nvia pull requests onto the pyimagej repository.\n\nMost development discussion takes place on the pyimagej\n[GitHub repository](https://github.com/imagej/pyimagej).\nYou can also reach the developers at the\n[Image.sc Zulip chat](https://imagesc.zulipchat.com/#narrow/stream/328100-scyjava).\n\nFor details on how to develop the PyImageJ codebase, see\n[Development.md](https://pyimagej.readthedocs.io/en/latest/Development.html).\n\n------------------------------------------------------------------------------\n\n[ImageJ2]: https://imagej.net/software/imagej2\n[ImageJ]: https://imagej.net/software/imagej\n[CellProfiler]: https://imagej.net/software/cellprofiler\n[OpenCV]: https://imagej.net/software/opencv\n[ITK]: https://imagej.net/software/itk\n[imglyb]: https://github.com/imglib/imglyb\n[jgo]: https://github.com/scijava/jgo\n[JPype]: https://jpype.readthedocs.io/\n[labeling]: https://github.com/Labelings/Labeling\n[matplotlib]: https://matplotlib.org/\n[NumPy]: https://numpy.org/\n[scyjava]: https://github.com/scijava/scyjava\n[xarray]: https://docs.xarray.dev/\n[OpenJDK]: https://en.wikipedia.org/wiki/OpenJDK\n[Maven]: https://maven.apache.org/\n[Conda]: https://conda.io/\n[Mamba]: https://mamba.readthedocs.io/\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Python wrapper for ImageJ",
"version": "1.6.0",
"project_urls": {
"documentation": "https://pyimagej.readthedocs.io/",
"download": "https://pypi.org/project/pyimagej/",
"homepage": "https://github.com/imagej/pyimagej",
"source": "https://github.com/imagej/pyimagej",
"tracker": "https://github.com/imagej/pyimagej/issues"
},
"split_keywords": [
"java",
" imagej",
" imagej2",
" fiji"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fbef777d63f7b773507fce93948ec85508419912810f086d03cb31ba53d08608",
"md5": "4a7c6764e403066a46cc0ac88021da6c",
"sha256": "d2a5bfc42e261dcbc3eb4c82f08e4cb11ec821cdd2d6b157ae335178b59a441f"
},
"downloads": -1,
"filename": "pyimagej-1.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4a7c6764e403066a46cc0ac88021da6c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 36697,
"upload_time": "2025-01-14T19:57:17",
"upload_time_iso_8601": "2025-01-14T19:57:17.973694Z",
"url": "https://files.pythonhosted.org/packages/fb/ef/777d63f7b773507fce93948ec85508419912810f086d03cb31ba53d08608/pyimagej-1.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "691369681031c3aec5ff1aa31de18fba827ee587f955bfafd0479bb4c6ca4fb9",
"md5": "f6a6c19cd8c7489390406e92fa46dec0",
"sha256": "2bdd734994df14d784902322c920346ea382545ff6d1776f5e106706098e717f"
},
"downloads": -1,
"filename": "pyimagej-1.6.0.tar.gz",
"has_sig": false,
"md5_digest": "f6a6c19cd8c7489390406e92fa46dec0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 63723,
"upload_time": "2025-01-14T19:57:19",
"upload_time_iso_8601": "2025-01-14T19:57:19.245186Z",
"url": "https://files.pythonhosted.org/packages/69/13/69681031c3aec5ff1aa31de18fba827ee587f955bfafd0479bb4c6ca4fb9/pyimagej-1.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-14 19:57:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "imagej",
"github_project": "pyimagej",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pyimagej"
}