pyjstat


Namepyjstat JSON
Version 2.4.0 PyPI version JSON
download
home_pagehttps://github.com/predicador37/pyjstat
SummaryLibrary to handle JSON-stat data in python using pandas DataFrames.
upload_time2023-03-31 12:29:47
maintainer
docs_urlhttps://pythonhosted.org/pyjstat/
authorMiguel Expósito Martín
requires_python
licenseApache License 2.0
keywords json-stat json statistics dataframe converter
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            **LAST RELEASE 2.0**: update to 2.0 version is highly recommended, since it 
supports JSON-stat 2.0 and brings other improvements. Also, Version 2.X starts 
to **support Pandas 1.X, and won't have backwards compatibility**.
**WARNING**: support for Python 2.7 has been removed in pyjstat 2.0.

=======
pyjstat
=======

.. image:: https://travis-ci.org/predicador37/pyjstat.svg?branch=master
    :target: https://travis-ci.org/predicador37/pyjstat

**pyjstat** is a python library for **JSON-stat** formatted data manipulation
which allows reading and writing JSON-stat [1]_ format with python,using the
DataFrame structures provided by the widely accepted pandas library [2]_.
The JSON-stat format is a simple lightweight JSON format for data
dissemination, currently in its 2.0 version.
Pyjstat is inspired in rjstat [3]_, a library to read and write
JSON-stat with R, by ajschumacher. Note that, like in the rjstat project,
not all features are supported (i.e. not all metadata are converted).
**pyjstat** is provided under the Apache License 2.0.

.. [1] http://json-stat.org/ for JSON-stat information
.. [2] http://pandas.pydata.org for Python Data Analysis Library information
.. [3] https://github.com/ajschumacher/rjstat for rjstat library information

This library was first developed to work with Python 2.7. With some fixes
(thanks to @andrekittredge), now it works with Python 3.4 too.

Support for JSON-stat 1.3 and 2.0 is provided. JSON-stat 1.3 methods are
deprecated now and shouldn't be used in the future, but backwards compatibility
has been preserved.

Pyjstat 1.0 is aimed for simplicity. JSON-stat classes have been replicated
(Dataset, Collection and Dimension) and provided with simple read() and write()
methods. Funcionality covers common use cases as having a URL or dataframe
as data sources.

Methods for retrieving the value of a particular cube cell are taken from the
JSON-stat Javascript sample code. Thanks to @badosa for this.

Also, version 1.0 makes use of the requests package internally, which should
make downloading of datasets easier.

Test coverage is 88% and Travis CI is used.

Finally, note that the new classes and methods are inspired by JSON-stat 2.0,
and hence, won't work with previous versions of JSON-stat. However, older
methods are still available incorporating bug fixes and performance
improvements.

Installation
============

pyjstat requires pandas package. For installation::

    pip install pyjstat

Usage of version 1.0 and newer (with JSON-stat 2.0 support)
===========================================================

Dataset operations: read and write
----------------------------------

Typical usage often looks like this::

    from pyjstat import pyjstat

    EXAMPLE_URL = 'http://json-stat.org/samples/galicia.json'

    # read from json-stat
    dataset = pyjstat.Dataset.read(EXAMPLE_URL)

    # write to dataframe
    df = dataset.write('dataframe')
    print(df)

    # read from dataframe
    dataset_from_df = pyjstat.Dataset.read(df)

    # write to json-stat
    print(dataset_from_df.write())

Dataset operation: get_value
----------------------------------

This operation mimics the Javascript example in the JSON-stat web page::

    from pyjstat import pyjstat

    EXAMPLE_URL = 'http://json-stat.org/samples/oecd.json'
    query = [{'concept': 'UNR'}, {'area': 'US'}, {'year': '2010'}]

    dataset = pyjstat.Dataset.read(EXAMPLE_URL)
    print(dataset.get_value(query))

Collection operations: read and write
-------------------------------------

A collection can be parsed into a list of dataframes::

    from pyjstat import pyjstat

    EXAMPLE_URL = 'http://json-stat.org/samples/collection.json'

    collection = pyjstat.Collection.read(EXAMPLE_URL)
    df_list = collection.write('dataframe_list')
    print(df_list)

Example with UK ONS API
-----------------------

In the following example, apikey parameter must be replaced by a real api key
from ONS. This dataset corresponds to residence type by sex by age in London::

    EXAMPLE_URL = 'http://web.ons.gov.uk/ons/api/data/dataset/DC1104EW.json?'\
                  'context=Census&jsontype=json-stat&apikey=yourapikey&'\
                  'geog=2011HTWARDH&diff=&totals=false&'\
                  'dm/2011HTWARDH=E12000007'
    dataset = pyjstat.Dataset.read(EXAMPLE_URL)
    df = dataset.write('dataframe')
    print(df)

More examples
-------------

More examples can be found in the examples directory, both for versions 1.3
and 2.0.


Usage of version 0.3.5 and older (with support for JSON-stat 1.3)
=================================================================

This syntax is deprecated and therefore not recommended anymore.

From JSON-stat to pandas DataFrame
-----------------------------------

Typical usage often looks like this::

    from pyjstat import pyjstat
    import requests
    from collections import OrderedDict

    EXAMPLE_URL = 'http://json-stat.org/samples/us-labor.json'

    data = requests.get(EXAMPLE_URL)
    results = pyjstat.from_json_stat(data.json(object_pairs_hook=OrderedDict))
    print (results)

From pandas DataFrame to JSON-stat
----------------------------------

The same data can be converted into JSON-stat, with some unavoidable metadata
loss::

    from pyjstat import pyjstat
    import requests
    from collections import OrderedDict
    import json

    EXAMPLE_URL = 'http://json-stat.org/samples/us-labor.json'

    data = requests.get(EXAMPLE_URL)
    results = pyjstat.from_json_stat(data.json(object_pairs_hook=OrderedDict))
    print (results)
    print (json.dumps(json.loads(pyjstat.to_json_stat(results))))

Changes
-------

For a changes, fixes, improvements and new features reference, see CHANGES.txt.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/predicador37/pyjstat",
    "name": "pyjstat",
    "maintainer": "",
    "docs_url": "https://pythonhosted.org/pyjstat/",
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "json-stat,json,statistics,dataframe,converter",
    "author": "Miguel Exp\u00f3sito Mart\u00edn",
    "author_email": "miguel.exposito@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/62/25/a78cb7492a5482f0aa627189d2a58aa030ef419c36568cd8eb8581ab3451/pyjstat-2.4.0.tar.gz",
    "platform": null,
    "description": "**LAST RELEASE 2.0**: update to 2.0 version is highly recommended, since it \nsupports JSON-stat 2.0 and brings other improvements. Also, Version 2.X starts \nto **support Pandas 1.X, and won't have backwards compatibility**.\n**WARNING**: support for Python 2.7 has been removed in pyjstat 2.0.\n\n=======\npyjstat\n=======\n\n.. image:: https://travis-ci.org/predicador37/pyjstat.svg?branch=master\n    :target: https://travis-ci.org/predicador37/pyjstat\n\n**pyjstat** is a python library for **JSON-stat** formatted data manipulation\nwhich allows reading and writing JSON-stat [1]_ format with python,using the\nDataFrame structures provided by the widely accepted pandas library [2]_.\nThe JSON-stat format is a simple lightweight JSON format for data\ndissemination, currently in its 2.0 version.\nPyjstat is inspired in rjstat [3]_, a library to read and write\nJSON-stat with R, by ajschumacher. Note that, like in the rjstat project,\nnot all features are supported (i.e. not all metadata are converted).\n**pyjstat** is provided under the Apache License 2.0.\n\n.. [1] http://json-stat.org/ for JSON-stat information\n.. [2] http://pandas.pydata.org for Python Data Analysis Library information\n.. [3] https://github.com/ajschumacher/rjstat for rjstat library information\n\nThis library was first developed to work with Python 2.7. With some fixes\n(thanks to @andrekittredge), now it works with Python 3.4 too.\n\nSupport for JSON-stat 1.3 and 2.0 is provided. JSON-stat 1.3 methods are\ndeprecated now and shouldn't be used in the future, but backwards compatibility\nhas been preserved.\n\nPyjstat 1.0 is aimed for simplicity. JSON-stat classes have been replicated\n(Dataset, Collection and Dimension) and provided with simple read() and write()\nmethods. Funcionality covers common use cases as having a URL or dataframe\nas data sources.\n\nMethods for retrieving the value of a particular cube cell are taken from the\nJSON-stat Javascript sample code. Thanks to @badosa for this.\n\nAlso, version 1.0 makes use of the requests package internally, which should\nmake downloading of datasets easier.\n\nTest coverage is 88% and Travis CI is used.\n\nFinally, note that the new classes and methods are inspired by JSON-stat 2.0,\nand hence, won't work with previous versions of JSON-stat. However, older\nmethods are still available incorporating bug fixes and performance\nimprovements.\n\nInstallation\n============\n\npyjstat requires pandas package. For installation::\n\n    pip install pyjstat\n\nUsage of version 1.0 and newer (with JSON-stat 2.0 support)\n===========================================================\n\nDataset operations: read and write\n----------------------------------\n\nTypical usage often looks like this::\n\n    from pyjstat import pyjstat\n\n    EXAMPLE_URL = 'http://json-stat.org/samples/galicia.json'\n\n    # read from json-stat\n    dataset = pyjstat.Dataset.read(EXAMPLE_URL)\n\n    # write to dataframe\n    df = dataset.write('dataframe')\n    print(df)\n\n    # read from dataframe\n    dataset_from_df = pyjstat.Dataset.read(df)\n\n    # write to json-stat\n    print(dataset_from_df.write())\n\nDataset operation: get_value\n----------------------------------\n\nThis operation mimics the Javascript example in the JSON-stat web page::\n\n    from pyjstat import pyjstat\n\n    EXAMPLE_URL = 'http://json-stat.org/samples/oecd.json'\n    query = [{'concept': 'UNR'}, {'area': 'US'}, {'year': '2010'}]\n\n    dataset = pyjstat.Dataset.read(EXAMPLE_URL)\n    print(dataset.get_value(query))\n\nCollection operations: read and write\n-------------------------------------\n\nA collection can be parsed into a list of dataframes::\n\n    from pyjstat import pyjstat\n\n    EXAMPLE_URL = 'http://json-stat.org/samples/collection.json'\n\n    collection = pyjstat.Collection.read(EXAMPLE_URL)\n    df_list = collection.write('dataframe_list')\n    print(df_list)\n\nExample with UK ONS API\n-----------------------\n\nIn the following example, apikey parameter must be replaced by a real api key\nfrom ONS. This dataset corresponds to residence type by sex by age in London::\n\n    EXAMPLE_URL = 'http://web.ons.gov.uk/ons/api/data/dataset/DC1104EW.json?'\\\n                  'context=Census&jsontype=json-stat&apikey=yourapikey&'\\\n                  'geog=2011HTWARDH&diff=&totals=false&'\\\n                  'dm/2011HTWARDH=E12000007'\n    dataset = pyjstat.Dataset.read(EXAMPLE_URL)\n    df = dataset.write('dataframe')\n    print(df)\n\nMore examples\n-------------\n\nMore examples can be found in the examples directory, both for versions 1.3\nand 2.0.\n\n\nUsage of version 0.3.5 and older (with support for JSON-stat 1.3)\n=================================================================\n\nThis syntax is deprecated and therefore not recommended anymore.\n\nFrom JSON-stat to pandas DataFrame\n-----------------------------------\n\nTypical usage often looks like this::\n\n    from pyjstat import pyjstat\n    import requests\n    from collections import OrderedDict\n\n    EXAMPLE_URL = 'http://json-stat.org/samples/us-labor.json'\n\n    data = requests.get(EXAMPLE_URL)\n    results = pyjstat.from_json_stat(data.json(object_pairs_hook=OrderedDict))\n    print (results)\n\nFrom pandas DataFrame to JSON-stat\n----------------------------------\n\nThe same data can be converted into JSON-stat, with some unavoidable metadata\nloss::\n\n    from pyjstat import pyjstat\n    import requests\n    from collections import OrderedDict\n    import json\n\n    EXAMPLE_URL = 'http://json-stat.org/samples/us-labor.json'\n\n    data = requests.get(EXAMPLE_URL)\n    results = pyjstat.from_json_stat(data.json(object_pairs_hook=OrderedDict))\n    print (results)\n    print (json.dumps(json.loads(pyjstat.to_json_stat(results))))\n\nChanges\n-------\n\nFor a changes, fixes, improvements and new features reference, see CHANGES.txt.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Library to handle JSON-stat data in python using pandas DataFrames.",
    "version": "2.4.0",
    "split_keywords": [
        "json-stat",
        "json",
        "statistics",
        "dataframe",
        "converter"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6225a78cb7492a5482f0aa627189d2a58aa030ef419c36568cd8eb8581ab3451",
                "md5": "eb799e2a8da8616045f1d89a21590b58",
                "sha256": "dd7fc7b4ed0892fb949ff87eeea3e2c838754eef43922b40ba3c38fadfc30795"
            },
            "downloads": -1,
            "filename": "pyjstat-2.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "eb799e2a8da8616045f1d89a21590b58",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 798030,
            "upload_time": "2023-03-31T12:29:47",
            "upload_time_iso_8601": "2023-03-31T12:29:47.997131Z",
            "url": "https://files.pythonhosted.org/packages/62/25/a78cb7492a5482f0aa627189d2a58aa030ef419c36568cd8eb8581ab3451/pyjstat-2.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-31 12:29:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "predicador37",
    "github_project": "pyjstat",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": false,
    "requirements": [],
    "lcname": "pyjstat"
}
        
Elapsed time: 0.05449s