pykooh


Namepykooh JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://github.com/arkottke/pykooh
SummaryEfficient implementatins of the Konno Ohmachi filter in Python
upload_time2021-09-04 04:58:06
maintainer
docs_urlNone
authorAlbert Kottke
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            pykooh
======

|PyPi Cheese Shop| |Build Status| |Code Quality| |Test Coverage| |License| |DOI|

Konno Ohmachi filter implemented in Numba.

This code implements Konno-Ohmachi spectral smoothing as defined in::

    Konno, K. and Ohmachi, T., 1998. Ground-motion characteristics estimated
    from spectral ratio between horizontal and vertical components of
    microtremor. Bulletin of the Seismological Society of America, 88(1),
    pp.228-241.

This code was originally written for smoothing sub-module in gmprocess_
by Bruce Worden. Dave Boore has provided notes_
on this topic, which also may be of interest. Notes regarding the
characteristics of the Konno-Ohmachi filter and the implementation are
provided in the implementation_ Jupyter Notebook.

.. _gmprocess: https://github.com/usgs/groundmotion-processing/tree/master/gmprocess/smoothing
.. _notes: http://daveboore.com/daves_notes/notes%20on%20smoothing%20over%20logarithmically%20spaced%20freqs.pd
.. _implementation: implemenation.ipynb

Installation
============

``pykooh`` is available via ``pip`` and can be installed with:

::

   pip install pykooh

By default, ``pykooh`` uses ``numba`` for the fast implementation of the filter.
Performance can be increased by using ``cython``, but this requires a C
complier. If a C compiler is available, install ``cython`` required
dependencies with:

::

   pip install pykooh[cython]

Usage
=====

Smooth a signal using a bandwith of 30.

.. code:: python

   import pykooh
   signal_smooth = pykooh.smooth(freqs, freqs_raw, signal_raw, 30)

Additional examples and comparison with ``obspy`` are provided in example_.

.. _example: example.ipynb

Citation
========

Please cite this software using the following DOI_.

.. _DOI: https://zenodo.org/badge/latestdoi/183696586

.. |PyPi Cheese Shop| image:: https://img.shields.io/pypi/v/pykooh.svg
   :target: https://img.shields.io/pypi/v/pykooh.svg
.. |Build Status| image:: https://travis-ci.org/arkottke/pykooh.svg?branch=master
   :target: https://travis-ci.org/arkottke/pykooh
.. |Code Quality| image:: https://app.codacy.com/project/badge/Grade/c8a3110f14e444a598713b002c20f979
   :target: https://www.codacy.com/manual/arkottke/pykooh
.. |Test Coverage| image:: https://api.codacy.com/project/badge/Coverage/c8a3110f14e444a598713b002c20f979
   :target: https://www.codacy.com/manual/arkottke/pykooh
.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg
.. |DOI| image:: https://zenodo.org/badge/183696586.svg
   :target: https://zenodo.org/badge/latestdoi/183696586


Revision History
================

v0.3.2
------
- Change setup.py to install numpy prior to import.

v0.3.1
------
- Rename to pykooh

v0.3.0
------
- Rename to pykoom
- Add support for numba
- Make cython an optonal dependency

v0.2.5
------
- Packaging is hard. MANIFEST is fixed now.

v0.2.4
------
- Added History to MANIFEST.

v0.2.3
------
-  Updated badges.
-  Added tests for example and implemenation notebooks.

v0.2.2
------

-  Moved Cython to a setup_requires

v0.2.1
------

-  Fixed packaging issue

v0.2
----

-  Added calculation of effective amplitude spectrum

v0.1.2
------

-  Initial release



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arkottke/pykooh",
    "name": "pykooh",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Albert Kottke",
    "author_email": "albert.kottke@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/23/531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7/pykooh-0.3.2.tar.gz",
    "platform": "",
    "description": "pykooh\n======\n\n|PyPi Cheese Shop| |Build Status| |Code Quality| |Test Coverage| |License| |DOI|\n\nKonno Ohmachi filter implemented in Numba.\n\nThis code implements Konno-Ohmachi spectral smoothing as defined in::\n\n    Konno, K. and Ohmachi, T., 1998. Ground-motion characteristics estimated\n    from spectral ratio between horizontal and vertical components of\n    microtremor. Bulletin of the Seismological Society of America, 88(1),\n    pp.228-241.\n\nThis code was originally written for smoothing sub-module in gmprocess_\nby Bruce Worden. Dave Boore has provided notes_\non this topic, which also may be of interest. Notes regarding the\ncharacteristics of the Konno-Ohmachi filter and the implementation are\nprovided in the implementation_ Jupyter Notebook.\n\n.. _gmprocess: https://github.com/usgs/groundmotion-processing/tree/master/gmprocess/smoothing\n.. _notes: http://daveboore.com/daves_notes/notes%20on%20smoothing%20over%20logarithmically%20spaced%20freqs.pd\n.. _implementation: implemenation.ipynb\n\nInstallation\n============\n\n``pykooh`` is available via ``pip`` and can be installed with:\n\n::\n\n   pip install pykooh\n\nBy default, ``pykooh`` uses ``numba`` for the fast implementation of the filter.\nPerformance can be increased by using ``cython``, but this requires a C\ncomplier. If a C compiler is available, install ``cython`` required\ndependencies with:\n\n::\n\n   pip install pykooh[cython]\n\nUsage\n=====\n\nSmooth a signal using a bandwith of 30.\n\n.. code:: python\n\n   import pykooh\n   signal_smooth = pykooh.smooth(freqs, freqs_raw, signal_raw, 30)\n\nAdditional examples and comparison with ``obspy`` are provided in example_.\n\n.. _example: example.ipynb\n\nCitation\n========\n\nPlease cite this software using the following DOI_.\n\n.. _DOI: https://zenodo.org/badge/latestdoi/183696586\n\n.. |PyPi Cheese Shop| image:: https://img.shields.io/pypi/v/pykooh.svg\n   :target: https://img.shields.io/pypi/v/pykooh.svg\n.. |Build Status| image:: https://travis-ci.org/arkottke/pykooh.svg?branch=master\n   :target: https://travis-ci.org/arkottke/pykooh\n.. |Code Quality| image:: https://app.codacy.com/project/badge/Grade/c8a3110f14e444a598713b002c20f979\n   :target: https://www.codacy.com/manual/arkottke/pykooh\n.. |Test Coverage| image:: https://api.codacy.com/project/badge/Coverage/c8a3110f14e444a598713b002c20f979\n   :target: https://www.codacy.com/manual/arkottke/pykooh\n.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg\n.. |DOI| image:: https://zenodo.org/badge/183696586.svg\n   :target: https://zenodo.org/badge/latestdoi/183696586\n\n\nRevision History\n================\n\nv0.3.2\n------\n- Change setup.py to install numpy prior to import.\n\nv0.3.1\n------\n- Rename to pykooh\n\nv0.3.0\n------\n- Rename to pykoom\n- Add support for numba\n- Make cython an optonal dependency\n\nv0.2.5\n------\n- Packaging is hard. MANIFEST is fixed now.\n\nv0.2.4\n------\n- Added History to MANIFEST.\n\nv0.2.3\n------\n-  Updated badges.\n-  Added tests for example and implemenation notebooks.\n\nv0.2.2\n------\n\n-  Moved Cython to a setup_requires\n\nv0.2.1\n------\n\n-  Fixed packaging issue\n\nv0.2\n----\n\n-  Added calculation of effective amplitude spectrum\n\nv0.1.2\n------\n\n-  Initial release\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Efficient implementatins of the Konno Ohmachi filter in Python",
    "version": "0.3.2",
    "project_urls": {
        "Homepage": "https://github.com/arkottke/pykooh"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aeaef8adfdccb953f81b2297e3be8dac3d2c304fccc9a6f211a550c827b37c99",
                "md5": "a2f33de0e1e77134f10c6ff94d6da700",
                "sha256": "0f12a14b43c1f6589a9284506e99209a8cfc111b7166ea29259a5680ad4fe3cf"
            },
            "downloads": -1,
            "filename": "pykooh-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a2f33de0e1e77134f10c6ff94d6da700",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6480,
            "upload_time": "2021-09-04T04:58:05",
            "upload_time_iso_8601": "2021-09-04T04:58:05.107826Z",
            "url": "https://files.pythonhosted.org/packages/ae/ae/f8adfdccb953f81b2297e3be8dac3d2c304fccc9a6f211a550c827b37c99/pykooh-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba23531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7",
                "md5": "722a10e28678f86fadd8fd055571e969",
                "sha256": "d6597833c2bf2cb9db385dd31119fd76b4ebfdbafee8862daf27b574623a10dc"
            },
            "downloads": -1,
            "filename": "pykooh-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "722a10e28678f86fadd8fd055571e969",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6410,
            "upload_time": "2021-09-04T04:58:06",
            "upload_time_iso_8601": "2021-09-04T04:58:06.512451Z",
            "url": "https://files.pythonhosted.org/packages/ba/23/531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7/pykooh-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2021-09-04 04:58:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arkottke",
    "github_project": "pykooh",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "pykooh"
}
        
Elapsed time: 0.95592s