pykooh
======
|PyPi Cheese Shop| |Build Status| |Code Quality| |Test Coverage| |License| |DOI|
Konno Ohmachi filter implemented in Numba.
This code implements Konno-Ohmachi spectral smoothing as defined in::
Konno, K. and Ohmachi, T., 1998. Ground-motion characteristics estimated
from spectral ratio between horizontal and vertical components of
microtremor. Bulletin of the Seismological Society of America, 88(1),
pp.228-241.
This code was originally written for smoothing sub-module in gmprocess_
by Bruce Worden. Dave Boore has provided notes_
on this topic, which also may be of interest. Notes regarding the
characteristics of the Konno-Ohmachi filter and the implementation are
provided in the implementation_ Jupyter Notebook.
.. _gmprocess: https://github.com/usgs/groundmotion-processing/tree/master/gmprocess/smoothing
.. _notes: http://daveboore.com/daves_notes/notes%20on%20smoothing%20over%20logarithmically%20spaced%20freqs.pd
.. _implementation: implemenation.ipynb
Installation
============
``pykooh`` is available via ``pip`` and can be installed with:
::
pip install pykooh
By default, ``pykooh`` uses ``numba`` for the fast implementation of the filter.
Performance can be increased by using ``cython``, but this requires a C
complier. If a C compiler is available, install ``cython`` required
dependencies with:
::
pip install pykooh[cython]
Usage
=====
Smooth a signal using a bandwith of 30.
.. code:: python
import pykooh
signal_smooth = pykooh.smooth(freqs, freqs_raw, signal_raw, 30)
Additional examples and comparison with ``obspy`` are provided in example_.
.. _example: example.ipynb
Citation
========
Please cite this software using the following DOI_.
.. _DOI: https://zenodo.org/badge/latestdoi/183696586
.. |PyPi Cheese Shop| image:: https://img.shields.io/pypi/v/pykooh.svg
:target: https://img.shields.io/pypi/v/pykooh.svg
.. |Build Status| image:: https://travis-ci.org/arkottke/pykooh.svg?branch=master
:target: https://travis-ci.org/arkottke/pykooh
.. |Code Quality| image:: https://app.codacy.com/project/badge/Grade/c8a3110f14e444a598713b002c20f979
:target: https://www.codacy.com/manual/arkottke/pykooh
.. |Test Coverage| image:: https://api.codacy.com/project/badge/Coverage/c8a3110f14e444a598713b002c20f979
:target: https://www.codacy.com/manual/arkottke/pykooh
.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg
.. |DOI| image:: https://zenodo.org/badge/183696586.svg
:target: https://zenodo.org/badge/latestdoi/183696586
Revision History
================
v0.3.2
------
- Change setup.py to install numpy prior to import.
v0.3.1
------
- Rename to pykooh
v0.3.0
------
- Rename to pykoom
- Add support for numba
- Make cython an optonal dependency
v0.2.5
------
- Packaging is hard. MANIFEST is fixed now.
v0.2.4
------
- Added History to MANIFEST.
v0.2.3
------
- Updated badges.
- Added tests for example and implemenation notebooks.
v0.2.2
------
- Moved Cython to a setup_requires
v0.2.1
------
- Fixed packaging issue
v0.2
----
- Added calculation of effective amplitude spectrum
v0.1.2
------
- Initial release
Raw data
{
"_id": null,
"home_page": "https://github.com/arkottke/pykooh",
"name": "pykooh",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Albert Kottke",
"author_email": "albert.kottke@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ba/23/531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7/pykooh-0.3.2.tar.gz",
"platform": "",
"description": "pykooh\n======\n\n|PyPi Cheese Shop| |Build Status| |Code Quality| |Test Coverage| |License| |DOI|\n\nKonno Ohmachi filter implemented in Numba.\n\nThis code implements Konno-Ohmachi spectral smoothing as defined in::\n\n Konno, K. and Ohmachi, T., 1998. Ground-motion characteristics estimated\n from spectral ratio between horizontal and vertical components of\n microtremor. Bulletin of the Seismological Society of America, 88(1),\n pp.228-241.\n\nThis code was originally written for smoothing sub-module in gmprocess_\nby Bruce Worden. Dave Boore has provided notes_\non this topic, which also may be of interest. Notes regarding the\ncharacteristics of the Konno-Ohmachi filter and the implementation are\nprovided in the implementation_ Jupyter Notebook.\n\n.. _gmprocess: https://github.com/usgs/groundmotion-processing/tree/master/gmprocess/smoothing\n.. _notes: http://daveboore.com/daves_notes/notes%20on%20smoothing%20over%20logarithmically%20spaced%20freqs.pd\n.. _implementation: implemenation.ipynb\n\nInstallation\n============\n\n``pykooh`` is available via ``pip`` and can be installed with:\n\n::\n\n pip install pykooh\n\nBy default, ``pykooh`` uses ``numba`` for the fast implementation of the filter.\nPerformance can be increased by using ``cython``, but this requires a C\ncomplier. If a C compiler is available, install ``cython`` required\ndependencies with:\n\n::\n\n pip install pykooh[cython]\n\nUsage\n=====\n\nSmooth a signal using a bandwith of 30.\n\n.. code:: python\n\n import pykooh\n signal_smooth = pykooh.smooth(freqs, freqs_raw, signal_raw, 30)\n\nAdditional examples and comparison with ``obspy`` are provided in example_.\n\n.. _example: example.ipynb\n\nCitation\n========\n\nPlease cite this software using the following DOI_.\n\n.. _DOI: https://zenodo.org/badge/latestdoi/183696586\n\n.. |PyPi Cheese Shop| image:: https://img.shields.io/pypi/v/pykooh.svg\n :target: https://img.shields.io/pypi/v/pykooh.svg\n.. |Build Status| image:: https://travis-ci.org/arkottke/pykooh.svg?branch=master\n :target: https://travis-ci.org/arkottke/pykooh\n.. |Code Quality| image:: https://app.codacy.com/project/badge/Grade/c8a3110f14e444a598713b002c20f979\n :target: https://www.codacy.com/manual/arkottke/pykooh\n.. |Test Coverage| image:: https://api.codacy.com/project/badge/Coverage/c8a3110f14e444a598713b002c20f979\n :target: https://www.codacy.com/manual/arkottke/pykooh\n.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg\n.. |DOI| image:: https://zenodo.org/badge/183696586.svg\n :target: https://zenodo.org/badge/latestdoi/183696586\n\n\nRevision History\n================\n\nv0.3.2\n------\n- Change setup.py to install numpy prior to import.\n\nv0.3.1\n------\n- Rename to pykooh\n\nv0.3.0\n------\n- Rename to pykoom\n- Add support for numba\n- Make cython an optonal dependency\n\nv0.2.5\n------\n- Packaging is hard. MANIFEST is fixed now.\n\nv0.2.4\n------\n- Added History to MANIFEST.\n\nv0.2.3\n------\n- Updated badges.\n- Added tests for example and implemenation notebooks.\n\nv0.2.2\n------\n\n- Moved Cython to a setup_requires\n\nv0.2.1\n------\n\n- Fixed packaging issue\n\nv0.2\n----\n\n- Added calculation of effective amplitude spectrum\n\nv0.1.2\n------\n\n- Initial release\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Efficient implementatins of the Konno Ohmachi filter in Python",
"version": "0.3.2",
"project_urls": {
"Homepage": "https://github.com/arkottke/pykooh"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aeaef8adfdccb953f81b2297e3be8dac3d2c304fccc9a6f211a550c827b37c99",
"md5": "a2f33de0e1e77134f10c6ff94d6da700",
"sha256": "0f12a14b43c1f6589a9284506e99209a8cfc111b7166ea29259a5680ad4fe3cf"
},
"downloads": -1,
"filename": "pykooh-0.3.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a2f33de0e1e77134f10c6ff94d6da700",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6480,
"upload_time": "2021-09-04T04:58:05",
"upload_time_iso_8601": "2021-09-04T04:58:05.107826Z",
"url": "https://files.pythonhosted.org/packages/ae/ae/f8adfdccb953f81b2297e3be8dac3d2c304fccc9a6f211a550c827b37c99/pykooh-0.3.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ba23531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7",
"md5": "722a10e28678f86fadd8fd055571e969",
"sha256": "d6597833c2bf2cb9db385dd31119fd76b4ebfdbafee8862daf27b574623a10dc"
},
"downloads": -1,
"filename": "pykooh-0.3.2.tar.gz",
"has_sig": false,
"md5_digest": "722a10e28678f86fadd8fd055571e969",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6410,
"upload_time": "2021-09-04T04:58:06",
"upload_time_iso_8601": "2021-09-04T04:58:06.512451Z",
"url": "https://files.pythonhosted.org/packages/ba/23/531167969f7e539836550346f87ecba666aa78e3b7f4cd342e378199b4a7/pykooh-0.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2021-09-04 04:58:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "arkottke",
"github_project": "pykooh",
"travis_ci": true,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "pykooh"
}