# pyKrack
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
This file will become your README and also the index of your
documentation.
THIS IS CLEARLY STILL A WORK IN PROGRESS PROJECT
## Install
Due to the comparisons with the r package sna We recommend using conda.
Create an environment using the environment.yml file, load it and
install/run the package.
Alternatively pyKrack can also be isntalled using pip via the following
command
``` sh
pip install pyKrack
```
Then install the R dependencies listed in the conda environmnet.yml
manually.
## How to use
Please see the core and hierarchy notebooks for more detailed
explanations.
**pyKrack** consists of one main function,
[`compute_hierarchy`](https://FerranC96.github.io/pykrack/hierarchy.html#compute_hierarchy).
------------------------------------------------------------------------
<a
href="https://github.com/FerranC96/pykrack/blob/main/pykrack/hierarchy.py#LNone"
target="_blank" style="float:right; font-size:smaller">source</a>
### compute_hierarchy
> compute_hierarchy (G, metric='pykrack')
Compute one of the possible hierarchy scores
| | **Type** | **Default** | **Details** |
|-------------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G | | | Directed NetworkX graph |
| metric | str | pykrack | Type of hierarchy metric to compute. Accepted types are:<br>‘pykrack’ for this module’s implementation of the Krackhardt score.<br>‘rsnakrack’ for the sna implementation in R.<br>‘hierarchy_flow’ for the Luo and Magee 2011 as implemented in the NetworkX package. |
| **Returns** | **float** | | **One of the possible hierarchy scores** |
Raw data
{
"_id": null,
"home_page": "https://github.com/FerranC96/pykrack",
"name": "pykrack",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "nbdev jupyter notebook python",
"author": "FerranC96",
"author_email": "ferricaro@hotmail.com",
"download_url": "https://files.pythonhosted.org/packages/93/59/bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95/pykrack-0.0.1.tar.gz",
"platform": null,
"description": "# pyKrack\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nThis file will become your README and also the index of your\ndocumentation.\n\nTHIS IS CLEARLY STILL A WORK IN PROGRESS PROJECT\n\n## Install\n\nDue to the comparisons with the r package sna We recommend using conda.\nCreate an environment using the environment.yml file, load it and\ninstall/run the package.\n\nAlternatively pyKrack can also be isntalled using pip via the following\ncommand\n\n``` sh\npip install pyKrack\n```\n\nThen install the R dependencies listed in the conda environmnet.yml\nmanually.\n\n## How to use\n\nPlease see the core and hierarchy notebooks for more detailed\nexplanations.\n\n**pyKrack** consists of one main function,\n[`compute_hierarchy`](https://FerranC96.github.io/pykrack/hierarchy.html#compute_hierarchy).\n\n------------------------------------------------------------------------\n\n<a\nhref=\"https://github.com/FerranC96/pykrack/blob/main/pykrack/hierarchy.py#LNone\"\ntarget=\"_blank\" style=\"float:right; font-size:smaller\">source</a>\n\n### compute_hierarchy\n\n> compute_hierarchy (G, metric='pykrack')\n\nCompute one of the possible hierarchy scores\n\n| | **Type** | **Default** | **Details** |\n|-------------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| G | | | Directed NetworkX graph |\n| metric | str | pykrack | Type of hierarchy metric to compute. Accepted types are:<br>\u2018pykrack\u2019 for this module\u2019s implementation of the Krackhardt score.<br>\u2018rsnakrack\u2019 for the sna implementation in R.<br>\u2018hierarchy_flow\u2019 for the Luo and Magee 2011 as implemented in the NetworkX package. |\n| **Returns** | **float** | | **One of the possible hierarchy scores** |\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Computing Krackhardt hierarchy score on netowrkX graphs",
"version": "0.0.1",
"split_keywords": [
"nbdev",
"jupyter",
"notebook",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f8c2b7f3d44ffb1b6b2670c319d0fafd90663cd528a476ef973529b915e66dc0",
"md5": "cda1e4bd0a071c3da8ab1976718c0379",
"sha256": "ffc05fcfab4424e755969281c79170ff417830be2183d2b4b0b2d7a2b8d635f5"
},
"downloads": -1,
"filename": "pykrack-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cda1e4bd0a071c3da8ab1976718c0379",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8877,
"upload_time": "2023-04-12T12:53:10",
"upload_time_iso_8601": "2023-04-12T12:53:10.976503Z",
"url": "https://files.pythonhosted.org/packages/f8/c2/b7f3d44ffb1b6b2670c319d0fafd90663cd528a476ef973529b915e66dc0/pykrack-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9359bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95",
"md5": "88baac6fd6f9b2e3f2b840725513c45b",
"sha256": "b4cb9823dac4d98e50eabd9ea9032c1ac3c4a17c4d08a3078fab8679a7c659cd"
},
"downloads": -1,
"filename": "pykrack-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "88baac6fd6f9b2e3f2b840725513c45b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9197,
"upload_time": "2023-04-12T12:53:13",
"upload_time_iso_8601": "2023-04-12T12:53:13.135914Z",
"url": "https://files.pythonhosted.org/packages/93/59/bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95/pykrack-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-12 12:53:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "FerranC96",
"github_project": "pykrack",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pykrack"
}