pykrack


Namepykrack JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/FerranC96/pykrack
SummaryComputing Krackhardt hierarchy score on netowrkX graphs
upload_time2023-04-12 12:53:13
maintainer
docs_urlNone
authorFerranC96
requires_python>=3.7
licenseApache Software License 2.0
keywords nbdev jupyter notebook python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyKrack

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

This file will become your README and also the index of your
documentation.

THIS IS CLEARLY STILL A WORK IN PROGRESS PROJECT

## Install

Due to the comparisons with the r package sna We recommend using conda.
Create an environment using the environment.yml file, load it and
install/run the package.

Alternatively pyKrack can also be isntalled using pip via the following
command

``` sh
pip install pyKrack
```

Then install the R dependencies listed in the conda environmnet.yml
manually.

## How to use

Please see the core and hierarchy notebooks for more detailed
explanations.

**pyKrack** consists of one main function,
[`compute_hierarchy`](https://FerranC96.github.io/pykrack/hierarchy.html#compute_hierarchy).

------------------------------------------------------------------------

<a
href="https://github.com/FerranC96/pykrack/blob/main/pykrack/hierarchy.py#LNone"
target="_blank" style="float:right; font-size:smaller">source</a>

### compute_hierarchy

>      compute_hierarchy (G, metric='pykrack')

Compute one of the possible hierarchy scores

|             | **Type**  | **Default** | **Details**                                                                                                                                                                                                                                                            |
|-------------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G           |           |             | Directed NetworkX graph                                                                                                                                                                                                                                                |
| metric      | str       | pykrack     | Type of hierarchy metric to compute. Accepted types are:<br>‘pykrack’ for this module’s implementation of the Krackhardt score.<br>‘rsnakrack’ for the sna implementation in R.<br>‘hierarchy_flow’ for the Luo and Magee 2011 as implemented in the NetworkX package. |
| **Returns** | **float** |             | **One of the possible hierarchy scores**                                                                                                                                                                                                                               |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/FerranC96/pykrack",
    "name": "pykrack",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "nbdev jupyter notebook python",
    "author": "FerranC96",
    "author_email": "ferricaro@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/93/59/bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95/pykrack-0.0.1.tar.gz",
    "platform": null,
    "description": "# pyKrack\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nThis file will become your README and also the index of your\ndocumentation.\n\nTHIS IS CLEARLY STILL A WORK IN PROGRESS PROJECT\n\n## Install\n\nDue to the comparisons with the r package sna We recommend using conda.\nCreate an environment using the environment.yml file, load it and\ninstall/run the package.\n\nAlternatively pyKrack can also be isntalled using pip via the following\ncommand\n\n``` sh\npip install pyKrack\n```\n\nThen install the R dependencies listed in the conda environmnet.yml\nmanually.\n\n## How to use\n\nPlease see the core and hierarchy notebooks for more detailed\nexplanations.\n\n**pyKrack** consists of one main function,\n[`compute_hierarchy`](https://FerranC96.github.io/pykrack/hierarchy.html#compute_hierarchy).\n\n------------------------------------------------------------------------\n\n<a\nhref=\"https://github.com/FerranC96/pykrack/blob/main/pykrack/hierarchy.py#LNone\"\ntarget=\"_blank\" style=\"float:right; font-size:smaller\">source</a>\n\n### compute_hierarchy\n\n>      compute_hierarchy (G, metric='pykrack')\n\nCompute one of the possible hierarchy scores\n\n|             | **Type**  | **Default** | **Details**                                                                                                                                                                                                                                                            |\n|-------------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| G           |           |             | Directed NetworkX graph                                                                                                                                                                                                                                                |\n| metric      | str       | pykrack     | Type of hierarchy metric to compute. Accepted types are:<br>\u2018pykrack\u2019 for this module\u2019s implementation of the Krackhardt score.<br>\u2018rsnakrack\u2019 for the sna implementation in R.<br>\u2018hierarchy_flow\u2019 for the Luo and Magee 2011 as implemented in the NetworkX package. |\n| **Returns** | **float** |             | **One of the possible hierarchy scores**                                                                                                                                                                                                                               |\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "Computing Krackhardt hierarchy score on netowrkX graphs",
    "version": "0.0.1",
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f8c2b7f3d44ffb1b6b2670c319d0fafd90663cd528a476ef973529b915e66dc0",
                "md5": "cda1e4bd0a071c3da8ab1976718c0379",
                "sha256": "ffc05fcfab4424e755969281c79170ff417830be2183d2b4b0b2d7a2b8d635f5"
            },
            "downloads": -1,
            "filename": "pykrack-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cda1e4bd0a071c3da8ab1976718c0379",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8877,
            "upload_time": "2023-04-12T12:53:10",
            "upload_time_iso_8601": "2023-04-12T12:53:10.976503Z",
            "url": "https://files.pythonhosted.org/packages/f8/c2/b7f3d44ffb1b6b2670c319d0fafd90663cd528a476ef973529b915e66dc0/pykrack-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9359bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95",
                "md5": "88baac6fd6f9b2e3f2b840725513c45b",
                "sha256": "b4cb9823dac4d98e50eabd9ea9032c1ac3c4a17c4d08a3078fab8679a7c659cd"
            },
            "downloads": -1,
            "filename": "pykrack-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "88baac6fd6f9b2e3f2b840725513c45b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 9197,
            "upload_time": "2023-04-12T12:53:13",
            "upload_time_iso_8601": "2023-04-12T12:53:13.135914Z",
            "url": "https://files.pythonhosted.org/packages/93/59/bc806ef93023767d0823a940ff17de1d1bd4b275939dbb14a374eeeb3e95/pykrack-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-12 12:53:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "FerranC96",
    "github_project": "pykrack",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pykrack"
}
        
Elapsed time: 0.13015s