| Name | pylibcudf-cu12 JSON |
| Version |
25.10.0
JSON |
| download |
| home_page | None |
| Summary | pylibcudf - Python bindings for libcudf |
| upload_time | 2025-10-09 14:48:02 |
| maintainer | None |
| docs_url | None |
| author | NVIDIA Corporation |
| requires_python | >=3.10 |
| license | Apache-2.0 |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - GPU DataFrames</div>
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.
You can import `cudf` directly and use it like `pandas`:
```python
import cudf
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:
```python
%load_ext cudf.pandas # pandas operations now use the GPU!
import pandas as pd
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
## Resources
- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.
## Installation
### CUDA/GPU requirements
* CUDA 12.0+ with a compatible NVIDIA driver
* Volta architecture or better (Compute Capability >=7.0)
### Pip
cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:
```bash
# CUDA 13
pip install cudf-cu13
# CUDA 12
pip install cudf-cu12
```
### Conda
cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
```bash
# CUDA 13
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0
# CUDA 12
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9
```
We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Contributing
Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
Raw data
{
"_id": null,
"home_page": null,
"name": "pylibcudf-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/> cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 12.0+ with a compatible NVIDIA driver\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\n```bash\n# CUDA 13\npip install cudf-cu13\n\n# CUDA 12\npip install cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\n# CUDA 13\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0\n\n# CUDA 12\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "pylibcudf - Python bindings for libcudf",
"version": "25.10.0",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cudf/stable/",
"Homepage": "https://github.com/rapidsai/cudf"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "41beb34fb8642f3f8501eccd265bbde5ff82e7d247b26efb3c04d2f614c69793",
"md5": "2796d1fae9d94938b73402e8472b9abb",
"sha256": "75217bbdcf0d6fe0eff487a49646b4b0694e65e05c28a1a462a6119767bddc9c"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "2796d1fae9d94938b73402e8472b9abb",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 21606117,
"upload_time": "2025-10-09T14:48:02",
"upload_time_iso_8601": "2025-10-09T14:48:02.355601Z",
"url": "https://files.pythonhosted.org/packages/41/be/b34fb8642f3f8501eccd265bbde5ff82e7d247b26efb3c04d2f614c69793/pylibcudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5caf0ef1381174100953096fbb05001f08bcd041b89b864d6daf560c1f0d8723",
"md5": "60de9c1ae2fab99a46467740705c488b",
"sha256": "609daf953bf1f5be1b07421ef164a015fc4cccba83a09a1dbe05a0bd83d1b4cd"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "60de9c1ae2fab99a46467740705c488b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 21383917,
"upload_time": "2025-10-09T14:43:06",
"upload_time_iso_8601": "2025-10-09T14:43:06.044253Z",
"url": "https://files.pythonhosted.org/packages/5c/af/0ef1381174100953096fbb05001f08bcd041b89b864d6daf560c1f0d8723/pylibcudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f1a8ddf411b7f0d0a2620d8386fec2571b7bdc2de55daa44476cc1733fef3bd8",
"md5": "91e820f755810fda0b9c2986b1947e7b",
"sha256": "be29b4f266c1c8f0453d11682b61c463312a0650006fec3f95c2cbafa2c706d4"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "91e820f755810fda0b9c2986b1947e7b",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 21640770,
"upload_time": "2025-10-09T14:47:00",
"upload_time_iso_8601": "2025-10-09T14:47:00.087386Z",
"url": "https://files.pythonhosted.org/packages/f1/a8/ddf411b7f0d0a2620d8386fec2571b7bdc2de55daa44476cc1733fef3bd8/pylibcudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "25d198651724b3c4cd42f88fd503afeb7ce94709075fdcea4606c4e6d8c2e86e",
"md5": "e84f122b75543b99a62c989f59772cca",
"sha256": "327f1955240a82716af486642d235bf0512eda3d60611c2c2e53b2b48b27e2a4"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e84f122b75543b99a62c989f59772cca",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 21409902,
"upload_time": "2025-10-09T14:42:16",
"upload_time_iso_8601": "2025-10-09T14:42:16.304633Z",
"url": "https://files.pythonhosted.org/packages/25/d1/98651724b3c4cd42f88fd503afeb7ce94709075fdcea4606c4e6d8c2e86e/pylibcudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c70daa9580f44a4c641e2f889b87b714462afffaca33674c17126375d7487b1a",
"md5": "a81cf455d9de9d68e8e722959eb2619a",
"sha256": "52ba749056b0cc56f3ce1aa4dd09b9defa3e24df851dfb87317fe98fc73d720e"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "a81cf455d9de9d68e8e722959eb2619a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 21551806,
"upload_time": "2025-10-09T14:48:59",
"upload_time_iso_8601": "2025-10-09T14:48:59.546488Z",
"url": "https://files.pythonhosted.org/packages/c7/0d/aa9580f44a4c641e2f889b87b714462afffaca33674c17126375d7487b1a/pylibcudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "25d9f3cc6f24b04220efb01d6f39773357996732fe22158df973790204a223fb",
"md5": "320d3214402cfbe4b33bde55a50dae99",
"sha256": "589aa4769c9190a3872b34170fb6c26d0f67828140f88d20048dcf67e731cd47"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "320d3214402cfbe4b33bde55a50dae99",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 21362759,
"upload_time": "2025-10-09T14:40:34",
"upload_time_iso_8601": "2025-10-09T14:40:34.369428Z",
"url": "https://files.pythonhosted.org/packages/25/d9/f3cc6f24b04220efb01d6f39773357996732fe22158df973790204a223fb/pylibcudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3a6400c702cc944994d17973e0d30d6acd717106502518e4b77ae65ffe74857b",
"md5": "f82bac58a73b08784352d0b3f28341b2",
"sha256": "aa305e23a1d1206d419ae309906a1c786b77bcd0f40a64dc255f546af9d538f7"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "f82bac58a73b08784352d0b3f28341b2",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 21514424,
"upload_time": "2025-10-09T14:45:59",
"upload_time_iso_8601": "2025-10-09T14:45:59.506232Z",
"url": "https://files.pythonhosted.org/packages/3a/64/00c702cc944994d17973e0d30d6acd717106502518e4b77ae65ffe74857b/pylibcudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e47187c785487c6d7c8246c3ebfe4a05f9dfb03ee8a5bce12e693c12f8da765f",
"md5": "865a0285529b59de4b0a7bb2e57f1823",
"sha256": "c128f09062eb1d3ccfaa559ad5e8609f623fa9b08831ebde45ed90e54d902670"
},
"downloads": -1,
"filename": "pylibcudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "865a0285529b59de4b0a7bb2e57f1823",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 21326423,
"upload_time": "2025-10-09T14:42:40",
"upload_time_iso_8601": "2025-10-09T14:42:40.697561Z",
"url": "https://files.pythonhosted.org/packages/e4/71/87c785487c6d7c8246c3ebfe4a05f9dfb03ee8a5bce12e693c12f8da765f/pylibcudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-09 14:48:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cudf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pylibcudf-cu12"
}