<a href="https://pymanopt.org"><img src="docs/logo.png?raw=true" width="150" align="right"/></a>
# Pymanopt
> A Python toolbox for optimization on Riemannian manifolds with support for
> automatic differentiation.
| Overview | |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| Latest version | [![Latest version](https://badge.fury.io/py/pymanopt.svg)](https://badge.fury.io/py/pymanopt) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7500014.svg)](https://doi.org/10.5281/zenodo.7500014) |
| Downloads | [![Downloads](https://static.pepy.tech/personalized-badge/pymanopt?period=total&units=international_system&left_color=grey&right_color=green&left_text=Downloads)](https://pepy.tech/project/pymanopt) |
| Build status | [![Build status](https://github.com/pymanopt/pymanopt/actions/workflows/run_tests.yml/badge.svg)](https://github.com/pymanopt/pymanopt/actions/workflows/run_tests.yml) |
| Coverage | [![Coverage](https://coveralls.io/repos/github/pymanopt/pymanopt/badge.svg?branch=master)](https://coveralls.io/github/pymanopt/pymanopt?branch=master) |
| Code quality | [![Codacy Badge](https://app.codacy.com/project/badge/Grade/6de2ef56791d4c3b8eb991f66e250a28)](https://www.codacy.com/gh/pymanopt/pymanopt/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pymanopt/pymanopt&utm_campaign=Badge_Grade) [![CodeQL](https://github.com/pymanopt/pymanopt/actions/workflows/codeql.yml/badge.svg)](https://github.com/pymanopt/pymanopt/actions/workflows/codeql.yml) |
| Community | [![Gitter](https://badges.gitter.im/pymanopt/pymanopt.svg)](https://gitter.im/pymanopt/pymanopt?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) |
Please refer to the **[documentation](https://pymanopt.org/docs/)** and this
[JMLR paper](http://www.jmlr.org/papers/v17/16-177.html) to get started with
optimization on manifolds using Pymanopt.
If you wish to extend Pymanopt's functionality and/or contribute to the project
please refer to the [contributing guide](CONTRIBUTING.md).
We encourage users and developers to report problems, request features,
ask for help, or leave general comments either here on github or on
[gitter](https://gitter.im/pymanopt/pymanopt).
Pymanopt is distributed under the [3-clause BSD license](LICENSE).
Raw data
{
"_id": null,
"home_page": null,
"name": "pymanopt",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "manifolds, optimization, automatic differentiation",
"author": "Jamie Townsend, Niklas Koep, Sebastian Weichwald",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/9c/d1/ea4a088699e1ad78033e607e93b4d05c1158d0332cdd25d2d6c69f00838f/pymanopt-2.2.1.tar.gz",
"platform": null,
"description": "<a href=\"https://pymanopt.org\"><img src=\"docs/logo.png?raw=true\" width=\"150\" align=\"right\"/></a>\n\n# Pymanopt\n\n> A Python toolbox for optimization on Riemannian manifolds with support for\n> automatic differentiation.\n\n| Overview | |\n| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |\n| Latest version | [![Latest version](https://badge.fury.io/py/pymanopt.svg)](https://badge.fury.io/py/pymanopt) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7500014.svg)](https://doi.org/10.5281/zenodo.7500014) |\n| Downloads | [![Downloads](https://static.pepy.tech/personalized-badge/pymanopt?period=total&units=international_system&left_color=grey&right_color=green&left_text=Downloads)](https://pepy.tech/project/pymanopt) |\n| Build status | [![Build status](https://github.com/pymanopt/pymanopt/actions/workflows/run_tests.yml/badge.svg)](https://github.com/pymanopt/pymanopt/actions/workflows/run_tests.yml) |\n| Coverage | [![Coverage](https://coveralls.io/repos/github/pymanopt/pymanopt/badge.svg?branch=master)](https://coveralls.io/github/pymanopt/pymanopt?branch=master) |\n| Code quality | [![Codacy Badge](https://app.codacy.com/project/badge/Grade/6de2ef56791d4c3b8eb991f66e250a28)](https://www.codacy.com/gh/pymanopt/pymanopt/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pymanopt/pymanopt&utm_campaign=Badge_Grade) [![CodeQL](https://github.com/pymanopt/pymanopt/actions/workflows/codeql.yml/badge.svg)](https://github.com/pymanopt/pymanopt/actions/workflows/codeql.yml) |\n| Community | [![Gitter](https://badges.gitter.im/pymanopt/pymanopt.svg)](https://gitter.im/pymanopt/pymanopt?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) |\n\nPlease refer to the **[documentation](https://pymanopt.org/docs/)** and this\n[JMLR paper](http://www.jmlr.org/papers/v17/16-177.html) to get started with\noptimization on manifolds using Pymanopt.\nIf you wish to extend Pymanopt's functionality and/or contribute to the project\nplease refer to the [contributing guide](CONTRIBUTING.md).\n\nWe encourage users and developers to report problems, request features,\nask for help, or leave general comments either here on github or on\n[gitter](https://gitter.im/pymanopt/pymanopt).\n\nPymanopt is distributed under the [3-clause BSD license](LICENSE).\n",
"bugtrack_url": null,
"license": "BSD 3-Clause License",
"summary": "Toolbox for optimization on Riemannian manifolds with support for automatic differentiation",
"version": "2.2.1",
"project_urls": {
"homepage": "https://pymanopt.org"
},
"split_keywords": [
"manifolds",
" optimization",
" automatic differentiation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "822bb86705da6bbc42a57e8145420aa5e0d360662efd9cd6126ac2462b0062bd",
"md5": "7017f0b74cd002a8c758e4888d6f52de",
"sha256": "75fb11cc924252c8f045779a8ed4b054ddb805a540c314989598d60447560818"
},
"downloads": -1,
"filename": "pymanopt-2.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7017f0b74cd002a8c758e4888d6f52de",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 71990,
"upload_time": "2024-09-20T07:42:03",
"upload_time_iso_8601": "2024-09-20T07:42:03.575645Z",
"url": "https://files.pythonhosted.org/packages/82/2b/b86705da6bbc42a57e8145420aa5e0d360662efd9cd6126ac2462b0062bd/pymanopt-2.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9cd1ea4a088699e1ad78033e607e93b4d05c1158d0332cdd25d2d6c69f00838f",
"md5": "65cc578446eacefb03be0dd864248b9e",
"sha256": "c784929a436eb06d73371b53ae5db3cdc19c5e60280f8131553bc805cbf7a1da"
},
"downloads": -1,
"filename": "pymanopt-2.2.1.tar.gz",
"has_sig": false,
"md5_digest": "65cc578446eacefb03be0dd864248b9e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 430326,
"upload_time": "2024-09-20T07:42:05",
"upload_time_iso_8601": "2024-09-20T07:42:05.268260Z",
"url": "https://files.pythonhosted.org/packages/9c/d1/ea4a088699e1ad78033e607e93b4d05c1158d0332cdd25d2d6c69f00838f/pymanopt-2.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-20 07:42:05",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pymanopt"
}