pymapee


Namepymapee JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/tuyenhavan/pymapee
SummaryA Simple Python package to pre-processing satellite data using Google Earth Engine.
upload_time2023-04-07 14:42:42
maintainer
docs_urlNone
authorTuyen Ha
requires_python>=3.7
licenseMIT license
keywords pymapee
VCS
bugtrack_url
requirements earthengine-api
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Welcome to pymapee

[![image](https://img.shields.io/pypi/v/pymapee.svg)](https://pypi.python.org/pypi/pymapee)
[![image](https://img.shields.io/conda/vn/conda-forge/pymapee.svg)](https://anaconda.org/conda-forge/pymapee)
[![image](https://pepy.tech/badge/pymapee)](https://pepy.tech/project/pymapee)
[![image](https://github.com/tuyenhavan/pymapee/workflows/docs/badge.svg)](https://pymapee.org)
[![image](https://github.com/tuyenhavan/pymapee/workflows/build/badge.svg)](https://github.com/tuyenhavan/pymapee/actions?query=workflow%3Abuild)
[![image](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)


**A Simple Python package to pre-processing satellite-based data using Google Earth Engine.**

`pymapee` is a simple Python package that aims to provide common functionalities to pre-process or calculate vegetation drought indices using Google Earth Engine. Currently, this package supports cloud masking (MODIS, Landsat, Sentinel-2), composite (monthly), and calculation of vegetation anomaly index (VAI) and vegetation condition index (VCI). It also supports to download an image collection (e.g., time-series NDVI or LST) or an image. This package is under active development, and changes are expected over time.

-  GitHub repo: [https://github.com/tuyenhavan/pymapee](https://github.com/tuyenhavan/pymapee)
-   Free software: MIT license
---
## Features

-   Masking cloud-related pixels (e.g., MODIS, Landsat, and Sentinel-2)
-   Making monthly composite
-   Calculating monthly vegetation anomaly index (VAI) and vegetation condition index (VCI).
-   Scaling data
-   Downloading an image or image collection (e.g., time-series NDVI)

Examples are provided [here](https://github.com/tuyenhavan/pymapee/tree/main/examples), and it will be regularly updated.

---
## Installation
Install `pymapee` using pip 

`pip install pymapee`

or install from Github to get the latest update.

`pip install git+https://github.com/tuyenhavan/pymapee.git`

---
## Credits

This package was created with [Cookiecutter](https://github.com/cookiecutter/cookiecutter) and the [giswqs/pypackage](https://github.com/giswqs/pypackage) project template.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tuyenhavan/pymapee",
    "name": "pymapee",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "pymapee",
    "author": "Tuyen Ha",
    "author_email": "tuyenmassey@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3c/e2/11d24d9dbbcf77ff1a6e508cb37c70e91651bc841032bbb6cb1e05d3b45a/pymapee-0.0.4.tar.gz",
    "platform": null,
    "description": "# Welcome to pymapee\n\n[![image](https://img.shields.io/pypi/v/pymapee.svg)](https://pypi.python.org/pypi/pymapee)\n[![image](https://img.shields.io/conda/vn/conda-forge/pymapee.svg)](https://anaconda.org/conda-forge/pymapee)\n[![image](https://pepy.tech/badge/pymapee)](https://pepy.tech/project/pymapee)\n[![image](https://github.com/tuyenhavan/pymapee/workflows/docs/badge.svg)](https://pymapee.org)\n[![image](https://github.com/tuyenhavan/pymapee/workflows/build/badge.svg)](https://github.com/tuyenhavan/pymapee/actions?query=workflow%3Abuild)\n[![image](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\n\n**A Simple Python package to pre-processing satellite-based data using Google Earth Engine.**\n\n`pymapee` is a simple Python package that aims to provide common functionalities to pre-process or calculate vegetation drought indices using Google Earth Engine. Currently, this package supports cloud masking (MODIS, Landsat, Sentinel-2), composite (monthly), and calculation of vegetation anomaly index (VAI) and vegetation condition index (VCI). It also supports to download an image collection (e.g., time-series NDVI or LST) or an image. This package is under active development, and changes are expected over time.\n\n-  GitHub repo: [https://github.com/tuyenhavan/pymapee](https://github.com/tuyenhavan/pymapee)\n-   Free software: MIT license\n---\n## Features\n\n-   Masking cloud-related pixels (e.g., MODIS, Landsat, and Sentinel-2)\n-   Making monthly composite\n-   Calculating monthly vegetation anomaly index (VAI) and vegetation condition index (VCI).\n-   Scaling data\n-   Downloading an image or image collection (e.g., time-series NDVI)\n\nExamples are provided [here](https://github.com/tuyenhavan/pymapee/tree/main/examples), and it will be regularly updated.\n\n---\n## Installation\nInstall `pymapee` using pip \n\n`pip install pymapee`\n\nor install from Github to get the latest update.\n\n`pip install git+https://github.com/tuyenhavan/pymapee.git`\n\n---\n## Credits\n\nThis package was created with [Cookiecutter](https://github.com/cookiecutter/cookiecutter) and the [giswqs/pypackage](https://github.com/giswqs/pypackage) project template.",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "A Simple Python package to pre-processing satellite data using Google Earth Engine.",
    "version": "0.0.4",
    "split_keywords": [
        "pymapee"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ce211d24d9dbbcf77ff1a6e508cb37c70e91651bc841032bbb6cb1e05d3b45a",
                "md5": "6767909085cfc587ec3eb2f7a6248f1c",
                "sha256": "e6c6fae44c84baf6defc4310ed9c1836c494799d07314ce414992a4d7d5c3d52"
            },
            "downloads": -1,
            "filename": "pymapee-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "6767909085cfc587ec3eb2f7a6248f1c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 18465,
            "upload_time": "2023-04-07T14:42:42",
            "upload_time_iso_8601": "2023-04-07T14:42:42.771636Z",
            "url": "https://files.pythonhosted.org/packages/3c/e2/11d24d9dbbcf77ff1a6e508cb37c70e91651bc841032bbb6cb1e05d3b45a/pymapee-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-07 14:42:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "tuyenhavan",
    "github_project": "pymapee",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "earthengine-api",
            "specs": [
                [
                    ">=",
                    "0.1.316"
                ]
            ]
        }
    ],
    "lcname": "pymapee"
}
        
Elapsed time: 0.13485s