Pymbar (https://simtk.org/home/pymbar) is a library
that provides tools for optimally combining simulations
from multiple thermodynamic states using maximum likelihood
methods to compute free energies (normalization constants)
and expectation values from all of the samples simultaneously.
Raw data
{
"_id": null,
"home_page": "http://github.com/choderalab/pymbar",
"name": "pymbar",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "molecular mechanics, forcefield, Bayesian parameterization",
"author": "Levi N. Naden and Jaime Rodriguez-Guerra and Michael R. Shirts and John D. Chodera",
"author_email": "levi.naden@choderalab.org, jaime.rodriguez-guerra@choderalab.org, michael.shirts@virginia.edu, john.chodera@choderalab.org",
"download_url": "https://files.pythonhosted.org/packages/ff/25/9d149a5bb62a55792ceeb9058fa75996490141017a2a6a1f6a8978540026/pymbar-4.0.3.tar.gz",
"platform": null,
"description": "Pymbar (https://simtk.org/home/pymbar) is a library\nthat provides tools for optimally combining simulations\nfrom multiple thermodynamic states using maximum likelihood\nmethods to compute free energies (normalization constants)\nand expectation values from all of the samples simultaneously.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Python implementation of the multistate Bennett acceptance ratio (MBAR) method",
"version": "4.0.3",
"project_urls": {
"Homepage": "http://github.com/choderalab/pymbar"
},
"split_keywords": [
"molecular mechanics",
" forcefield",
" bayesian parameterization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "81d9adf833614ea03f92eccd45274dd31eef2e6d06a301216f21dc6cfdc7c17f",
"md5": "5f6c14cdbb3172d3d3a8287f40ab86c0",
"sha256": "302bc12199ab8bb234cac381ed11c63b2c1376f57ff8550cb6ecdb34276d9ef8"
},
"downloads": -1,
"filename": "pymbar-4.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5f6c14cdbb3172d3d3a8287f40ab86c0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 107398,
"upload_time": "2024-03-21T17:25:57",
"upload_time_iso_8601": "2024-03-21T17:25:57.109726Z",
"url": "https://files.pythonhosted.org/packages/81/d9/adf833614ea03f92eccd45274dd31eef2e6d06a301216f21dc6cfdc7c17f/pymbar-4.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ff259d149a5bb62a55792ceeb9058fa75996490141017a2a6a1f6a8978540026",
"md5": "39fbb4aca909e85e5fa7dec83b15fe71",
"sha256": "d38868e515631eb6bbf306448bfdf166bd82f7b887935eaf4b681f40628be9ff"
},
"downloads": -1,
"filename": "pymbar-4.0.3.tar.gz",
"has_sig": false,
"md5_digest": "39fbb4aca909e85e5fa7dec83b15fe71",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 115955,
"upload_time": "2024-03-21T17:25:58",
"upload_time_iso_8601": "2024-03-21T17:25:58.344360Z",
"url": "https://files.pythonhosted.org/packages/ff/25/9d149a5bb62a55792ceeb9058fa75996490141017a2a6a1f6a8978540026/pymbar-4.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-21 17:25:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "choderalab",
"github_project": "pymbar",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"appveyor": true,
"lcname": "pymbar"
}