pymcdm


Namepymcdm JSON
Version 1.3.0 PyPI version JSON
download
home_pageNone
SummaryPython library for Multi-Criteria Decision-Making
upload_time2024-12-29 10:00:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![github](https://img.shields.io/badge/github-repo-000.svg?logo=github&labelColor=gray&color=blue)](https://github.com/kotbaton/pymcdm)
[![Version](https://img.shields.io/pypi/v/pymcdm)](https://pypi.org/project/pymcdm/)
[![ReadTheDocs](https://img.shields.io/readthedocs/pymcdm)](https://pymcdm.readthedocs.io/en/latest/)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.softx.2023.101368-000.svg?color=blue)](https://doi.org/10.1016/j.softx.2023.101368)

**Important:** Development process was moved from [GitLab](https://gitlab.com/shekhand/mcda) to [Github](https://github.com/kotbaton/pymcdm).

# PyMCDM

Python 3 library for solving multi-criteria decision-making (MCDM) problems.

Documentation is avaliable on [readthedocs](https://pymcdm.readthedocs.io/en/master/).

___

# Installation

You can download and install `pymcdm` library using pip:

```Bash
pip install pymcdm
```

You can run all tests with following command from the root of the project:

```Bash
python -m unittest -v
```

___

# Citing pymcdm

If usage of the pymcdm library lead to a scientific publication, please 
acknowledge this fact by citing "[_Kizielewicz, B., Shekhovtsov, A., 
& Sałabun, W. (2023). pymcdm—The universal library for solving multi-criteria 
decision-making problems. SoftwareX, 22, 101368._](https://doi.org/10.1016/j.softx.2023.101368)"

Or using BibTex:
```bibtex
@article{kizielewicz2023pymcdm,
  title={pymcdm—The universal library for solving multi-criteria decision-making problems},
  author={Kizielewicz, Bart{\l}omiej and Shekhovtsov, Andrii and Sa{\l}abun, Wojciech},
  journal={SoftwareX},
  volume={22},
  pages={101368},
  year={2023},
  publisher={Elsevier}
}
```

DOI: [https://doi.org/10.1016/j.softx.2023.101368](https://doi.org/10.1016/j.softx.2023.101368)

___

# Available methods

The library contains:

* MCDA methods:

| Acronym            	 | Method Name                                                                 |               Reference                |
|:---------------------|-----------------------------------------------------------------------------|:--------------------------------------:|
| TOPSIS             	 | Technique for the Order of Prioritisation by Similarity to Ideal Solution   |               [[1]](#c1)               |
| VIKOR              	 | VIseKriterijumska Optimizacija I Kompromisno Resenje                        |               [[2]](#c2)               |
| COPRAS             	 | COmplex PRoportional ASsessment                                             |               [[3]](#c3)               |
| PROMETHEE I & II   	 | Preference Ranking Organization METHod for Enrichment of Evaluations I & II |               [[4]](#c4)               |
| COMET              	 | Characteristic Objects Method                                               |               [[5]](#c5)               |
| SPOTIS             	 | Stable Preference Ordering Towards Ideal Solution                           |               [[6]](#c6)               |
| ARAS               	 | Additive Ratio ASsessment                                                   |         [[7]](#c7),[[8]](#c8)          |
| COCOSO             	 | COmbined COmpromise SOlution                                                |               [[9]](#c9)               |
| CODAS              	 | COmbinative Distance-based ASsessment                                       |              [[10]](#c10)              |
| EDAS               	 | Evaluation based on Distance from Average Solution                          |       [[11]](#c11),[[12]](#c12)        |
| MABAC              	 | Multi-Attributive Border Approximation area Comparison                      |              [[13]](#c13)              |
| MAIRCA             	 | MultiAttributive Ideal-Real Comparative Analysis                            | [[14]](#c14),[[15]](#c15),[[16]](#c16) |
| MARCOS             	 | Measurement Alternatives and Ranking according to COmpromise Solution       |       [[17]](#c17),[[18]](#c18)        |
| OCRA               	 | Operational Competitiveness Ratings                                         |       [[19]](#c19),[[20]](#c20)        |
| MOORA              	 | Multi-Objective Optimization Method by Ratio Analysis                       |       [[21]](#c21),[[22]](#c22)        |
| RIM                	 | Reference Ideal Method                                                      |              [[48]](#c48)              |
| ERVD               	 | Election Based on relative Value Distances                                  |              [[49]](#c49)              |
| PROBID               | Preference Ranking On the Basis of Ideal-average Distance                   |              [[50]](#c50)              |
| WSM                  | Weighted Sum Model                                                          |              [[51]](#c51)              |
| WPM                  | Weighted Product Model                                                      |              [[52]](#c52)              |
| WASPAS               | Weighted Aggregated Sum Product ASSessment                                  |              [[53]](#c53)              |
| RAM                	 | Root Assesment Method                                                       |              [[62]](#c62)              |

* Weighting methods:

| Acronym | Method Name                                           |                Reference                 |
|:--------|:------------------------------------------------------|:----------------------------------------:|
| -       | Equal/Mean weights                                    |               [[23]](#c23)               |
| -       | Entropy weights                                       | [[23]](#c23), [[24]](#c24), [[25]](#c25) |
| STD     | Standard Deviation weights                            |        [[23]](#c23), [[26]](#c26)        |
| MEREC   | MEthod based on the Removal Effects of Criteria       |               [[27]](#c27)               |
| CRITIC  | CRiteria Importance Through Intercriteria Correlation |        [[28]](#c28), [[29]](#c29)        |
| CILOS   | Criterion Impact LOS                                  |               [[30]](#c30)               |
| IDOCRIW | Integrated Determination of Objective CRIteria Weight |               [[30]](#c30)               |
| -       | Angular/Angle weights                                 |               [[31]](#c31)               |
| -       | Gini Coeficient weights                               |               [[32]](#c32)               |
| -       | Statistical variance weights                          |               [[33]](#c33)               |
| AHP     | Analytic Hierarchy Process                            |               [[65]](#c65)               |
| RANCOM  | RANking COMparison                                    |               [[66]](#c66)               |

* Normalization methods:

| Method Name                          	 |     Reference         	     |
|:---------------------------------------|:---------------------------:|
| Weitendorf’s Linear Normalization    	 |    [[34]](#c34)        	    |
| Maximum - Linear Normalization       	 |    [[35]](#c35)        	    |
| Sum-Based Linear Normalization       	 |    [[36]](#c36)        	    |
| Vector Normalization                 	 | [[36]](#c36),[[37]](#c37) 	 |
| Logarithmic Normalization            	 | [[36]](#c36),[[37]](#c37) 	 |
| Linear Normalization (Max-Min)       	 | [[34]](#c34),[[38]](#c38) 	 |
| Non-linear Normalization (Max-Min)   	 |    [[39]](#c39)        	    |
| Enhanced Accuracy Normalization      	 |    [[40]](#c40)        	    |
| Lai and Hwang Normalization            |        [[38]](#c38)         |
| Zavadskas and Turskis Normalization    |        [[38]](#c38)         |

* Correlation coefficients:

| Coefficient name                                   	 |     Reference         	     |
|------------------------------------------------------|:---------------------------:|
| Spearman's rank correlation coefficient            	 | [[41]](#c41),[[42]](#c42) 	 |
| Pearson correlation coefficient                    	 |    [[43]](#c43)       	     |
| Weighted Spearman’s rank correlation coefficient   	 |    [[44]](#c44)       	     |
| Rank Similarity Coefficient                        	 |    [[45]](#c45)       	     |
| Kendall rank correlation coefficient               	 |    [[46]](#c46)       	     |
| Goodman and Kruskal's gamma                        	 |    [[47]](#c47)       	     |
| Drastic Weighted Similarity (draWS)                  |    [[59]](#c59)       	     |
| Weights Similarity Coefficient (WSC)                 |    [[60]](#c60)       	     |
| Weights Similarity Coefficient 2 (WSC2)              |    [[60]](#c60)       	     |

* Helpers

| Helpers submodule    | Description                                                                                                      |
|----------------------|------------------------------------------------------------------------------------------------------------------|
| `rankdata`           | Create ranking vector from the preference vector. Smaller preference values has higher positions in the ranking. |
| `rrankdata`          | Alias to the `rankdata` which reverse the sorting order.                                                         |
| `correlation_matrix` | Create the correlation matrix for given coefficient from several the several rankings.                           |
| `normalize_matrix`   | Normalize decision matrix column by column using given normalization and criteria types.                         |

* COMET Tools

| Class/Function       | Description                                                                                        |  Reference   |
|----------------------|----------------------------------------------------------------------------------------------------|:------------:|
| `MethodExpert`       | Class which allows to evaluate CO in COMET using any MCDA method.                                  | [[56]](#c56) |
| `ManualExpert`       | Class which allows to evaluate CO in COMET manually by pairwise comparisons.                       | [[57]](#c57) |
| `FunctionExpert`     | Class which allows to evaluate CO in COMET using any expert function.                              | [[58]](#c58) |
| `CompromiseExpert`   | Class which allows to evaluate CO in COMET using compromise between several different methods.     | [[63]](#c63) |
| `TriadSupportExpert` | Class which allows to evaluate CO in COMET manually but with triads support.                       | [[64]](#c64) |
| `ESPExpert`          | Class which allows to identify MEJ using expert-defined Expected Solution Points.                  | [[61]](#c61) |
| `triads_consistency` | Function to which evaluates consistency of the MEJ matrix.                                         | [[55]](#c55) |
| `Submodel`           | Class mostly for internal use in StructuralCOMET class.                                            | [[54]](#c54) |
| `StructuralCOMET`    | Class which allows to split a decision problem into submodels to be evaluated by the COMET method. | [[54]](#c54) |

___
# Usage example

Here's a small example of how use this library to solve MCDM problem.
For more examples with explanation see [examples](https://gitlab.com/shekhand/mcda/-/blob/master/examples/examples.ipynb).

```python
import numpy as np
from pymcdm.methods import TOPSIS
from pymcdm.helpers import rrankdata

# Define decision matrix (3 criteria, 4 alternative)
alts = np.array([
    [4, 4, 0.2],
    [1, 5, 0.5],
    [3, 2, 0.3],
    [4, 3, 0.5]
])

# Define criteria weights (should sum up to 1)
weights = np.array([0.3, 0.5, 0.2])

# Define criteria types (1 for profit, -1 for cost)
types = np.array([1, -1, 1])

# Create object of the method
# Note, that default normalization method for TOPSIS is minmax
topsis = TOPSIS()

# Determine preferences and ranking for alternatives
pref = topsis(alts, weights, types)
ranking = rrankdata(pref)

for r, p in zip(ranking, pref):
    print(r, p)
```

And the output of this example (numbers are rounded):

```bash
3.0 0.469
4.0 0.255
1.0 0.765
2.0 0.747
```

If you want to inspect computation process in details, you can add the following code to the above example:

```python
results = topsis(alts, weights, types, verbose=True)
print(results)
```

This will produce output that contains formatted decision matrix, intermediate results, preference values and ranking.

---
# References

<a name="c1">[1]</a> Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.

<a name="c2">[2]</a> Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water resources research, 16(1), 14-20.

<a name="c3">[3]</a> Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-attribute assessment of road design solutions by using the COPRAS method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195-203.

<a name="c4">[4]</a> Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238.

<a name="c5">[5]</a> Sałabun, W., Karczmarczyk, A., Wątróbski, J., & Jankowski, J. (2018, November). Handling data uncertainty in decision making with COMET. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1478-1484). IEEE.

<a name="c6">[6]</a> Dezert, J., Tchamova, A., Han, D., & Tacnet, J. M. (2020, July). The spotis rank reversal free method for multi-criteria decision-making support. In 2020 IEEE 23rd International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE.

<a name="c7">[7]</a> Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and economic development of economy, 16(2), 159-172.

<a name="c8">[8]</a> Stanujkic, D., Djordjevic, B., & Karabasevic, D. (2015). Selection of candidates in the process of recruitment and selection of personnel based on the SWARA and ARAS methods. Quaestus, (7), 53.

<a name="c9">[9]</a> Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision.

<a name="c10">[10]</a> Badi, I., Shetwan, A. G., & Abdulshahed, A. M. (2017, September). Supplier selection using COmbinative Distance-based ASsessment (CODAS) method for multi-criteria decision-making. In Proceedings of The 1st International Conference on Management, Engineering and Environment (ICMNEE) (pp. 395-407).

<a name="c11">[11]</a> Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.

<a name="c12">[12]</a> Yazdani, M., Torkayesh, A. E., Santibanez-Gonzalez, E. D., & Otaghsara, S. K. (2020). Evaluation of renewable energy resources using integrated Shannon Entropy—EDAS model. Sustainable Operations and Computers, 1, 35-42.

<a name="c13">[13]</a> Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028.

<a name="c14">[14]</a> Gigović, L., Pamučar, D., Bajić, Z., & Milićević, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372.

<a name="c15">[15]</a> Pamucar, D. S., Pejcic Tarle, S., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATELMAIRCA model: sustainable selection of a location for the development of multimodal logistics centre. Economic research-Ekonomska istraživanja, 31(1), 1641-1665.

<a name="c16">[16]</a> Aksoy, E. (2021). An Analysis on Turkey's Merger and Acquisition Activities: MAIRCA Method. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 12(1), 1-11.

<a name="c17">[17]</a> Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231.

<a name="c18">[18]</a> Ulutaş, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karaköy, Ç. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672.

<a name="c19">[19]</a> Parkan, C. (1994). Operational competitiveness ratings of production units. Managerial and Decision Economics, 15(3), 201-221.

<a name="c20">[20]</a> Işık, A. T., & Adalı, E. A. (2016). A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem. International Journal of Advanced Operations Management, 8(2), 140-151.

<a name="c21">[21]</a> Brauers, W. K. (2003). Optimization methods for a stakeholder society: a revolution in economic thinking by multi-objective optimization (Vol. 73). Springer Science & Business Media.

<a name="c22">[22]</a> Hussain, S. A. I., & Mandal, U. K. (2016). Entropy based MCDM approach for Selection of material. In National Level Conference on Engineering Problems and Application of Mathematics (pp. 1-6).

<a name="c23">[23]</a> Sałabun, W., Wątróbski, J., & Shekhovtsov, A. (2020). Are mcda methods benchmarkable? a comparative study of topsis, vikor, copras, and promethee ii methods. Symmetry, 12(9), 1549.

<a name="c24">[24]</a> Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon’s entropy and multi attribute decision making. Entropy, 12(1), 53-62.

<a name="c25">[25]</a> Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia engineering, 26, 2085-2091.

<a name="c26">[26]</a> Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1-2), 1-12.

<a name="c27">[27]</a> Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525.

<a name="c28">[28]</a> Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770.

<a name="c29">[29]</a> Tuş, A., & Adalı, E. A. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56(2), 528-538.

<a name="c30">[30]</a> Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283.

<a name="c31">[31]</a> Shuai, D., Zongzhun, Z., Yongji, W., & Lei, L. (2012, May). A new angular method to determine the objective weights. In 2012 24th Chinese Control and Decision Conference (CCDC) (pp. 3889-3892). IEEE.

<a name="c32">[32]</a> Li, G., & Chi, G. (2009, December). A new determining objective weights method-gini coefficient weight. In 2009 First International Conference on Information Science and Engineering (pp. 3726-3729). IEEE.

<a name="c33">[33]</a> Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738-4747.

<a name="c34">[34]</a> Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35, 445-469.

<a name="c35">[35]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.

<a name="c36">[36]</a> Gardziejczyk, W., & Zabicki, P. (2017). Normalization and variant assessment methods in selection of road alignment variants–case study. Journal of civil engineering and management, 23(4), 510-523.

<a name="c37">[37]</a> Zavadskas, E. K., & Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, 19(2), 303-314.

<a name="c38">[38]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.

<a name="c39">[39]</a> Peldschus, F., Vaigauskas, E., & Zavadskas, E. K. (1983). Technologische entscheidungen bei der berücksichtigung mehrerer Ziehle. Bauplanung Bautechnik, 37(4), 173-175.

<a name="c40">[40]</a> Zeng, Q. L., Li, D. D., & Yang, Y. B. (2013). VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management. Journal of medical systems, 37(2), 1-9.

<a name="c41">[41]</a> Binet, A., & Henri, V. (1898). La fatigue intellectuelle (Vol. 1). Schleicher frères.

<a name="c42">[42]</a> Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 1904‐1920, 3(3), 271-295.

<a name="c43">[43]</a> Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. proceedings of the royal society of London, 58(347-352), 240-242.

<a name="c44">[44]</a> Dancelli, L., Manisera, M., & Vezzoli, M. (2013). On two classes of Weighted Rank Correlation measures deriving from the Spearman’s ρ. In Statistical Models for Data Analysis (pp. 107-114). Springer, Heidelberg.

<a name="c45">[45]</a> Sałabun, W., & Urbaniak, K. (2020, June). A new coefficient of rankings similarity in decision-making problems. In International Conference on Computational Science (pp. 632-645). Springer, Cham.

<a name="c46">[46]</a> Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

<a name="c47">[47]</a> Goodman, L. A., & Kruskal, W. H. (1979). Measures of association for cross classifications. Measures of association for cross classifications, 2-34.

<a name="c48">[48]</a> Cables, E., Lamata, M. T., & Verdegay, J. L. (2016). RIM-reference ideal method in multicriteria decision making. Information Sciences, 337, 1-10.

<a name="c49">[49]</a> Shyur, H. J., Yin, L., Shih, H. S., & Cheng, C. B. (2015). A multiple criteria decision making method based on relative value distances. Foundations of Computing and Decision Sciences, 40(4), 299-315.

<a name="c50">[50]</a> Wang, Z., Rangaiah, G. P., & Wang, X. (2021). Preference ranking on the basis of ideal-average distance method for multi-criteria decision-making. Industrial & Engineering Chemistry Research, 60(30), 11216-11230.

<a name="c51">[51]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.

<a name="c52">[52]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.

<a name="c53">[53]</a> Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.

<a name="c54">[54]</a> Shekhovtsov, A., Kołodziejczyk, J., & Sałabun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541.

<a name="c55">[55]</a> Sałabun, W., Shekhovtsov, A., & Kizielewicz, B. (2021, June). A new consistency coefficient in the multi-criteria decision analysis domain. In Computational Science–ICCS 2021: 21st International Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part I (pp. 715-727). Cham: Springer International Publishing.

<a name="c56">[56]</a> Paradowski, B., Bączkiewicz, A., & Watrąbski, J. (2021). Towards proper consumer choices-MCDM based product selection. Procedia Computer Science, 192, 1347-1358.

<a name="c57">[57]</a> Sałabun, W. (2015). The characteristic objects method: A new distance‐based approach to multicriteria decision‐making problems. Journal of Multi‐Criteria Decision Analysis, 22(1-2), 37-50.

<a name="c58">[58]</a> Sałabun, W., & Piegat, A. (2017). Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artificial Intelligence Review, 48, 557-571.

<a name="c59">[59]</a> Sałabun, W., & Shekhovtsov, A. (2023, September). An Innovative Drastic Metric for Ranking Similarity in Decision-Making Problems. In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 731-738). IEEE.

<a name="c60">[60]</a> Shekhovtsov, A. (2023). Evaluating the Performance of Subjective Weighting Methods for Multi-Criteria Decision-Making using a novel Weights Similarity Coefficient. Procedia Computer Science, 225, 4785-4794.

<a name="c61">[61]</a> Shekhovtsov, A., Kizielewicz, B., & Sałabun, W. (2023). Advancing individual decision-making: An extension of the characteristic objects method using expected solution point. Information Sciences, 647, 119456.

<a name="c62">[62]</a> Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): a novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695.

<a name="c63">[63]</a> Kizielewicz, B., Shekhovtsov, A., Więckowski, J., Wątróbski, J., & Sałabun, W. (2024). The Compromise-COMET method for identifying an adaptive multi-criteria decision model. IEEE Access.

<a name="c64">[64]</a> Shekhovtsov, A., & Sałabun, W. (2023, September). The New Algorithm for Effective Reducing the Number of Pairwise Comparisons in the Decision Support Methods. In European Conference on Artificial Intelligence (pp. 243-254). Cham: Springer Nature Switzerland.

<a name="c65">[65]</a> Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073–1076.

<a name="c66">[66]</a> Więckowski, J., Kizielewicz, B., Shekhovtsov, A., & Sałabun, W. (2023). RANCOM: A novel approach to identifying criteria relevance based on inaccuracy expert judgments. Engineering Applications of Artificial Intelligence, 122, 106114.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pymcdm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Andrii Shekhovtsov <andrii-shekhovtsov@zut.edu.pl>, Bart\u0142omiej Kizielewicz <bartlomiej-kizielewicz@zut.edu.pl>",
    "download_url": "https://files.pythonhosted.org/packages/7b/94/88ab4f9f7db88697fc148093ac65107e0d2fcfa61fb806b7d53cb53fdc2e/pymcdm-1.3.0.tar.gz",
    "platform": null,
    "description": "[![github](https://img.shields.io/badge/github-repo-000.svg?logo=github&labelColor=gray&color=blue)](https://github.com/kotbaton/pymcdm)\n[![Version](https://img.shields.io/pypi/v/pymcdm)](https://pypi.org/project/pymcdm/)\n[![ReadTheDocs](https://img.shields.io/readthedocs/pymcdm)](https://pymcdm.readthedocs.io/en/latest/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)\n[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.softx.2023.101368-000.svg?color=blue)](https://doi.org/10.1016/j.softx.2023.101368)\n\n**Important:** Development process was moved from [GitLab](https://gitlab.com/shekhand/mcda) to [Github](https://github.com/kotbaton/pymcdm).\n\n# PyMCDM\n\nPython 3 library for solving multi-criteria decision-making (MCDM) problems.\n\nDocumentation is avaliable on [readthedocs](https://pymcdm.readthedocs.io/en/master/).\n\n___\n\n# Installation\n\nYou can download and install `pymcdm` library using pip:\n\n```Bash\npip install pymcdm\n```\n\nYou can run all tests with following command from the root of the project:\n\n```Bash\npython -m unittest -v\n```\n\n___\n\n# Citing pymcdm\n\nIf usage of the pymcdm library lead to a scientific publication, please \nacknowledge this fact by citing \"[_Kizielewicz, B., Shekhovtsov, A., \n& Sa\u0142abun, W. (2023). pymcdm\u2014The universal library for solving multi-criteria \ndecision-making problems. SoftwareX, 22, 101368._](https://doi.org/10.1016/j.softx.2023.101368)\"\n\nOr using BibTex:\n```bibtex\n@article{kizielewicz2023pymcdm,\n  title={pymcdm\u2014The universal library for solving multi-criteria decision-making problems},\n  author={Kizielewicz, Bart{\\l}omiej and Shekhovtsov, Andrii and Sa{\\l}abun, Wojciech},\n  journal={SoftwareX},\n  volume={22},\n  pages={101368},\n  year={2023},\n  publisher={Elsevier}\n}\n```\n\nDOI: [https://doi.org/10.1016/j.softx.2023.101368](https://doi.org/10.1016/j.softx.2023.101368)\n\n___\n\n# Available methods\n\nThe library contains:\n\n* MCDA methods:\n\n| Acronym            \t | Method Name                                                                 |               Reference                |\n|:---------------------|-----------------------------------------------------------------------------|:--------------------------------------:|\n| TOPSIS             \t | Technique for the Order of Prioritisation by Similarity to Ideal Solution   |               [[1]](#c1)               |\n| VIKOR              \t | VIseKriterijumska Optimizacija I Kompromisno Resenje                        |               [[2]](#c2)               |\n| COPRAS             \t | COmplex PRoportional ASsessment                                             |               [[3]](#c3)               |\n| PROMETHEE I & II   \t | Preference Ranking Organization METHod for Enrichment of Evaluations I & II |               [[4]](#c4)               |\n| COMET              \t | Characteristic Objects Method                                               |               [[5]](#c5)               |\n| SPOTIS             \t | Stable Preference Ordering Towards Ideal Solution                           |               [[6]](#c6)               |\n| ARAS               \t | Additive Ratio ASsessment                                                   |         [[7]](#c7),[[8]](#c8)          |\n| COCOSO             \t | COmbined COmpromise SOlution                                                |               [[9]](#c9)               |\n| CODAS              \t | COmbinative Distance-based ASsessment                                       |              [[10]](#c10)              |\n| EDAS               \t | Evaluation based on Distance from Average Solution                          |       [[11]](#c11),[[12]](#c12)        |\n| MABAC              \t | Multi-Attributive Border Approximation area Comparison                      |              [[13]](#c13)              |\n| MAIRCA             \t | MultiAttributive Ideal-Real Comparative Analysis                            | [[14]](#c14),[[15]](#c15),[[16]](#c16) |\n| MARCOS             \t | Measurement Alternatives and Ranking according to COmpromise Solution       |       [[17]](#c17),[[18]](#c18)        |\n| OCRA               \t | Operational Competitiveness Ratings                                         |       [[19]](#c19),[[20]](#c20)        |\n| MOORA              \t | Multi-Objective Optimization Method by Ratio Analysis                       |       [[21]](#c21),[[22]](#c22)        |\n| RIM                \t | Reference Ideal Method                                                      |              [[48]](#c48)              |\n| ERVD               \t | Election Based on relative Value Distances                                  |              [[49]](#c49)              |\n| PROBID               | Preference Ranking On the Basis of Ideal-average Distance                   |              [[50]](#c50)              |\n| WSM                  | Weighted Sum Model                                                          |              [[51]](#c51)              |\n| WPM                  | Weighted Product Model                                                      |              [[52]](#c52)              |\n| WASPAS               | Weighted Aggregated Sum Product ASSessment                                  |              [[53]](#c53)              |\n| RAM                \t | Root Assesment Method                                                       |              [[62]](#c62)              |\n\n* Weighting methods:\n\n| Acronym | Method Name                                           |                Reference                 |\n|:--------|:------------------------------------------------------|:----------------------------------------:|\n| -       | Equal/Mean weights                                    |               [[23]](#c23)               |\n| -       | Entropy weights                                       | [[23]](#c23), [[24]](#c24), [[25]](#c25) |\n| STD     | Standard Deviation weights                            |        [[23]](#c23), [[26]](#c26)        |\n| MEREC   | MEthod based on the Removal Effects of Criteria       |               [[27]](#c27)               |\n| CRITIC  | CRiteria Importance Through Intercriteria Correlation |        [[28]](#c28), [[29]](#c29)        |\n| CILOS   | Criterion Impact LOS                                  |               [[30]](#c30)               |\n| IDOCRIW | Integrated Determination of Objective CRIteria Weight |               [[30]](#c30)               |\n| -       | Angular/Angle weights                                 |               [[31]](#c31)               |\n| -       | Gini Coeficient weights                               |               [[32]](#c32)               |\n| -       | Statistical variance weights                          |               [[33]](#c33)               |\n| AHP     | Analytic Hierarchy Process                            |               [[65]](#c65)               |\n| RANCOM  | RANking COMparison                                    |               [[66]](#c66)               |\n\n* Normalization methods:\n\n| Method Name                          \t |     Reference         \t     |\n|:---------------------------------------|:---------------------------:|\n| Weitendorf\u2019s Linear Normalization    \t |    [[34]](#c34)        \t    |\n| Maximum - Linear Normalization       \t |    [[35]](#c35)        \t    |\n| Sum-Based Linear Normalization       \t |    [[36]](#c36)        \t    |\n| Vector Normalization                 \t | [[36]](#c36),[[37]](#c37) \t |\n| Logarithmic Normalization            \t | [[36]](#c36),[[37]](#c37) \t |\n| Linear Normalization (Max-Min)       \t | [[34]](#c34),[[38]](#c38) \t |\n| Non-linear Normalization (Max-Min)   \t |    [[39]](#c39)        \t    |\n| Enhanced Accuracy Normalization      \t |    [[40]](#c40)        \t    |\n| Lai and Hwang Normalization            |        [[38]](#c38)         |\n| Zavadskas and Turskis Normalization    |        [[38]](#c38)         |\n\n* Correlation coefficients:\n\n| Coefficient name                                   \t |     Reference         \t     |\n|------------------------------------------------------|:---------------------------:|\n| Spearman's rank correlation coefficient            \t | [[41]](#c41),[[42]](#c42) \t |\n| Pearson correlation coefficient                    \t |    [[43]](#c43)       \t     |\n| Weighted Spearman\u2019s rank correlation coefficient   \t |    [[44]](#c44)       \t     |\n| Rank Similarity Coefficient                        \t |    [[45]](#c45)       \t     |\n| Kendall rank correlation coefficient               \t |    [[46]](#c46)       \t     |\n| Goodman and Kruskal's gamma                        \t |    [[47]](#c47)       \t     |\n| Drastic Weighted Similarity (draWS)                  |    [[59]](#c59)       \t     |\n| Weights Similarity Coefficient (WSC)                 |    [[60]](#c60)       \t     |\n| Weights Similarity Coefficient 2 (WSC2)              |    [[60]](#c60)       \t     |\n\n* Helpers\n\n| Helpers submodule    | Description                                                                                                      |\n|----------------------|------------------------------------------------------------------------------------------------------------------|\n| `rankdata`           | Create ranking vector from the preference vector. Smaller preference values has higher positions in the ranking. |\n| `rrankdata`          | Alias to the `rankdata` which reverse the sorting order.                                                         |\n| `correlation_matrix` | Create the correlation matrix for given coefficient from several the several rankings.                           |\n| `normalize_matrix`   | Normalize decision matrix column by column using given normalization and criteria types.                         |\n\n* COMET Tools\n\n| Class/Function       | Description                                                                                        |  Reference   |\n|----------------------|----------------------------------------------------------------------------------------------------|:------------:|\n| `MethodExpert`       | Class which allows to evaluate CO in COMET using any MCDA method.                                  | [[56]](#c56) |\n| `ManualExpert`       | Class which allows to evaluate CO in COMET manually by pairwise comparisons.                       | [[57]](#c57) |\n| `FunctionExpert`     | Class which allows to evaluate CO in COMET using any expert function.                              | [[58]](#c58) |\n| `CompromiseExpert`   | Class which allows to evaluate CO in COMET using compromise between several different methods.     | [[63]](#c63) |\n| `TriadSupportExpert` | Class which allows to evaluate CO in COMET manually but with triads support.                       | [[64]](#c64) |\n| `ESPExpert`          | Class which allows to identify MEJ using expert-defined Expected Solution Points.                  | [[61]](#c61) |\n| `triads_consistency` | Function to which evaluates consistency of the MEJ matrix.                                         | [[55]](#c55) |\n| `Submodel`           | Class mostly for internal use in StructuralCOMET class.                                            | [[54]](#c54) |\n| `StructuralCOMET`    | Class which allows to split a decision problem into submodels to be evaluated by the COMET method. | [[54]](#c54) |\n\n___\n# Usage example\n\nHere's a small example of how use this library to solve MCDM problem.\nFor more examples with explanation see [examples](https://gitlab.com/shekhand/mcda/-/blob/master/examples/examples.ipynb).\n\n```python\nimport numpy as np\nfrom pymcdm.methods import TOPSIS\nfrom pymcdm.helpers import rrankdata\n\n# Define decision matrix (3 criteria, 4 alternative)\nalts = np.array([\n    [4, 4, 0.2],\n    [1, 5, 0.5],\n    [3, 2, 0.3],\n    [4, 3, 0.5]\n])\n\n# Define criteria weights (should sum up to 1)\nweights = np.array([0.3, 0.5, 0.2])\n\n# Define criteria types (1 for profit, -1 for cost)\ntypes = np.array([1, -1, 1])\n\n# Create object of the method\n# Note, that default normalization method for TOPSIS is minmax\ntopsis = TOPSIS()\n\n# Determine preferences and ranking for alternatives\npref = topsis(alts, weights, types)\nranking = rrankdata(pref)\n\nfor r, p in zip(ranking, pref):\n    print(r, p)\n```\n\nAnd the output of this example (numbers are rounded):\n\n```bash\n3.0 0.469\n4.0 0.255\n1.0 0.765\n2.0 0.747\n```\n\nIf you want to inspect computation process in details, you can add the following code to the above example:\n\n```python\nresults = topsis(alts, weights, types, verbose=True)\nprint(results)\n```\n\nThis will produce output that contains formatted decision matrix, intermediate results, preference values and ranking.\n\n---\n# References\n\n<a name=\"c1\">[1]</a> Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.\n\n<a name=\"c2\">[2]</a> Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water resources research, 16(1), 14-20.\n\n<a name=\"c3\">[3]</a> Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-attribute assessment of road design solutions by using the COPRAS method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195-203.\n\n<a name=\"c4\">[4]</a> Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238.\n\n<a name=\"c5\">[5]</a> Sa\u0142abun, W., Karczmarczyk, A., W\u0105tr\u00f3bski, J., & Jankowski, J. (2018, November). Handling data uncertainty in decision making with COMET. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1478-1484). IEEE.\n\n<a name=\"c6\">[6]</a> Dezert, J., Tchamova, A., Han, D., & Tacnet, J. M. (2020, July). The spotis rank reversal free method for multi-criteria decision-making support. In 2020 IEEE 23rd International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE.\n\n<a name=\"c7\">[7]</a> Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision\u2010making. Technological and economic development of economy, 16(2), 159-172.\n\n<a name=\"c8\">[8]</a> Stanujkic, D., Djordjevic, B., & Karabasevic, D. (2015). Selection of candidates in the process of recruitment and selection of personnel based on the SWARA and ARAS methods. Quaestus, (7), 53.\n\n<a name=\"c9\">[9]</a> Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision.\n\n<a name=\"c10\">[10]</a> Badi, I., Shetwan, A. G., & Abdulshahed, A. M. (2017, September). Supplier selection using COmbinative Distance-based ASsessment (CODAS) method for multi-criteria decision-making. In Proceedings of The 1st International Conference on Management, Engineering and Environment (ICMNEE) (pp. 395-407).\n\n<a name=\"c11\">[11]</a> Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.\n\n<a name=\"c12\">[12]</a> Yazdani, M., Torkayesh, A. E., Santibanez-Gonzalez, E. D., & Otaghsara, S. K. (2020). Evaluation of renewable energy resources using integrated Shannon Entropy\u2014EDAS model. Sustainable Operations and Computers, 1, 35-42.\n\n<a name=\"c13\">[13]</a> Pamu\u010dar, D., & \u0106irovi\u0107, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028.\n\n<a name=\"c14\">[14]</a> Gigovi\u0107, L., Pamu\u010dar, D., Baji\u0107, Z., & Mili\u0107evi\u0107, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372.\n\n<a name=\"c15\">[15]</a> Pamucar, D. S., Pejcic Tarle, S., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATELMAIRCA model: sustainable selection of a location for the development of multimodal logistics centre. Economic research-Ekonomska istra\u017eivanja, 31(1), 1641-1665.\n\n<a name=\"c16\">[16]</a> Aksoy, E. (2021). An Analysis on Turkey's Merger and Acquisition Activities: MAIRCA Method. G\u00fcm\u00fc\u015fhane \u00dcniversitesi Sosyal Bilimler Enstit\u00fcs\u00fc Elektronik Dergisi, 12(1), 1-11.\n\n<a name=\"c17\">[17]</a> Stevi\u0107, \u017d., Pamu\u010dar, D., Pu\u0161ka, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231.\n\n<a name=\"c18\">[18]</a> Uluta\u015f, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karak\u00f6y, \u00c7. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672.\n\n<a name=\"c19\">[19]</a> Parkan, C. (1994). Operational competitiveness ratings of production units. Managerial and Decision Economics, 15(3), 201-221.\n\n<a name=\"c20\">[20]</a> I\u015f\u0131k, A. T., & Adal\u0131, E. A. (2016). A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem. International Journal of Advanced Operations Management, 8(2), 140-151.\n\n<a name=\"c21\">[21]</a> Brauers, W. K. (2003). Optimization methods for a stakeholder society: a revolution in economic thinking by multi-objective optimization (Vol. 73). Springer Science & Business Media.\n\n<a name=\"c22\">[22]</a> Hussain, S. A. I., & Mandal, U. K. (2016). Entropy based MCDM approach for Selection of material. In National Level Conference on Engineering Problems and Application of Mathematics (pp. 1-6).\n\n<a name=\"c23\">[23]</a> Sa\u0142abun, W., W\u0105tr\u00f3bski, J., & Shekhovtsov, A. (2020). Are mcda methods benchmarkable? a comparative study of topsis, vikor, copras, and promethee ii methods. Symmetry, 12(9), 1549.\n\n<a name=\"c24\">[24]</a> Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon\u2019s entropy and multi attribute decision making. Entropy, 12(1), 53-62.\n\n<a name=\"c25\">[25]</a> Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia engineering, 26, 2085-2091.\n\n<a name=\"c26\">[26]</a> Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1-2), 1-12.\n\n<a name=\"c27\">[27]</a> Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525.\n\n<a name=\"c28\">[28]</a> Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770.\n\n<a name=\"c29\">[29]</a> Tu\u015f, A., & Adal\u0131, E. A. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56(2), 528-538.\n\n<a name=\"c30\">[30]</a> Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283.\n\n<a name=\"c31\">[31]</a> Shuai, D., Zongzhun, Z., Yongji, W., & Lei, L. (2012, May). A new angular method to determine the objective weights. In 2012 24th Chinese Control and Decision Conference (CCDC) (pp. 3889-3892). IEEE.\n\n<a name=\"c32\">[32]</a> Li, G., & Chi, G. (2009, December). A new determining objective weights method-gini coefficient weight. In 2009 First International Conference on Information Science and Engineering (pp. 3726-3729). IEEE.\n\n<a name=\"c33\">[33]</a> Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738-4747.\n\n<a name=\"c34\">[34]</a> Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35, 445-469.\n\n<a name=\"c35\">[35]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.\n\n<a name=\"c36\">[36]</a> Gardziejczyk, W., & Zabicki, P. (2017). Normalization and variant assessment methods in selection of road alignment variants\u2013case study. Journal of civil engineering and management, 23(4), 510-523.\n\n<a name=\"c37\">[37]</a> Zavadskas, E. K., & Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, 19(2), 303-314.\n\n<a name=\"c38\">[38]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.\n\n<a name=\"c39\">[39]</a> Peldschus, F., Vaigauskas, E., & Zavadskas, E. K. (1983). Technologische entscheidungen bei der ber\u00fccksichtigung mehrerer Ziehle. Bauplanung Bautechnik, 37(4), 173-175.\n\n<a name=\"c40\">[40]</a> Zeng, Q. L., Li, D. D., & Yang, Y. B. (2013). VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management. Journal of medical systems, 37(2), 1-9.\n\n<a name=\"c41\">[41]</a> Binet, A., & Henri, V. (1898). La fatigue intellectuelle (Vol. 1). Schleicher fr\u00e8res.\n\n<a name=\"c42\">[42]</a> Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 1904\u20101920, 3(3), 271-295.\n\n<a name=\"c43\">[43]</a> Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. proceedings of the royal society of London, 58(347-352), 240-242.\n\n<a name=\"c44\">[44]</a> Dancelli, L., Manisera, M., & Vezzoli, M. (2013). On two classes of Weighted Rank Correlation measures deriving from the Spearman\u2019s \u03c1. In Statistical Models for Data Analysis (pp. 107-114). Springer, Heidelberg.\n\n<a name=\"c45\">[45]</a> Sa\u0142abun, W., & Urbaniak, K. (2020, June). A new coefficient of rankings similarity in decision-making problems. In International Conference on Computational Science (pp. 632-645). Springer, Cham.\n\n<a name=\"c46\">[46]</a> Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.\n\n<a name=\"c47\">[47]</a> Goodman, L. A., & Kruskal, W. H. (1979). Measures of association for cross classifications. Measures of association for cross classifications, 2-34.\n\n<a name=\"c48\">[48]</a> Cables, E., Lamata, M. T., & Verdegay, J. L. (2016). RIM-reference ideal method in multicriteria decision making. Information Sciences, 337, 1-10.\n\n<a name=\"c49\">[49]</a> Shyur, H. J., Yin, L., Shih, H. S., & Cheng, C. B. (2015). A multiple criteria decision making method based on relative value distances. Foundations of Computing and Decision Sciences, 40(4), 299-315.\n\n<a name=\"c50\">[50]</a> Wang, Z., Rangaiah, G. P., & Wang, X. (2021). Preference ranking on the basis of ideal-average distance method for multi-criteria decision-making. Industrial & Engineering Chemistry Research, 60(30), 11216-11230.\n\n<a name=\"c51\">[51]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.\n\n<a name=\"c52\">[52]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.\n\n<a name=\"c53\">[53]</a> Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.\n\n<a name=\"c54\">[54]</a> Shekhovtsov, A., Ko\u0142odziejczyk, J., & Sa\u0142abun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541.\n\n<a name=\"c55\">[55]</a> Sa\u0142abun, W., Shekhovtsov, A., & Kizielewicz, B. (2021, June). A new consistency coefficient in the multi-criteria decision analysis domain. In Computational Science\u2013ICCS 2021: 21st International Conference, Krakow, Poland, June 16\u201318, 2021, Proceedings, Part I (pp. 715-727). Cham: Springer International Publishing.\n\n<a name=\"c56\">[56]</a> Paradowski, B., B\u0105czkiewicz, A., & Watr\u0105bski, J. (2021). Towards proper consumer choices-MCDM based product selection. Procedia Computer Science, 192, 1347-1358.\n\n<a name=\"c57\">[57]</a> Sa\u0142abun, W. (2015). The characteristic objects method: A new distance\u2010based approach to multicriteria decision\u2010making problems. Journal of Multi\u2010Criteria Decision Analysis, 22(1-2), 37-50.\n\n<a name=\"c58\">[58]</a> Sa\u0142abun, W., & Piegat, A. (2017). Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artificial Intelligence Review, 48, 557-571.\n\n<a name=\"c59\">[59]</a> Sa\u0142abun, W., & Shekhovtsov, A. (2023, September). An Innovative Drastic Metric for Ranking Similarity in Decision-Making Problems. In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 731-738). IEEE.\n\n<a name=\"c60\">[60]</a> Shekhovtsov, A. (2023). Evaluating the Performance of Subjective Weighting Methods for Multi-Criteria Decision-Making using a novel Weights Similarity Coefficient. Procedia Computer Science, 225, 4785-4794.\n\n<a name=\"c61\">[61]</a> Shekhovtsov, A., Kizielewicz, B., & Sa\u0142abun, W. (2023). Advancing individual decision-making: An extension of the characteristic objects method using expected solution point. Information Sciences, 647, 119456.\n\n<a name=\"c62\">[62]</a> Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): a novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695.\n\n<a name=\"c63\">[63]</a> Kizielewicz, B., Shekhovtsov, A., Wi\u0119ckowski, J., W\u0105tr\u00f3bski, J., & Sa\u0142abun, W. (2024). The Compromise-COMET method for identifying an adaptive multi-criteria decision model. IEEE Access.\n\n<a name=\"c64\">[64]</a> Shekhovtsov, A., & Sa\u0142abun, W. (2023, September). The New Algorithm for Effective Reducing the Number of Pairwise Comparisons in the Decision Support Methods. In European Conference on Artificial Intelligence (pp. 243-254). Cham: Springer Nature Switzerland.\n\n<a name=\"c65\">[65]</a> Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073\u20131076.\n\n<a name=\"c66\">[66]</a> Wi\u0119ckowski, J., Kizielewicz, B., Shekhovtsov, A., & Sa\u0142abun, W. (2023). RANCOM: A novel approach to identifying criteria relevance based on inaccuracy expert judgments. Engineering Applications of Artificial Intelligence, 122, 106114.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python library for Multi-Criteria Decision-Making",
    "version": "1.3.0",
    "project_urls": {
        "Homepage": "https://github.com/kotbaton/pymcdm",
        "Issues": "https://github.com/kotbaton/pymcdm/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "12764f2eaebf9ed718d910eb279877ee14cb93b32baec0745593dcd5c2f1ddf8",
                "md5": "d793bbe8695a3183061a5d6471ce935e",
                "sha256": "e7aef23f7cd03ca382f9a1386d9e44a23f40f54785243d72c565f9b63e4095d8"
            },
            "downloads": -1,
            "filename": "pymcdm-1.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d793bbe8695a3183061a5d6471ce935e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 127427,
            "upload_time": "2024-12-29T10:00:36",
            "upload_time_iso_8601": "2024-12-29T10:00:36.989064Z",
            "url": "https://files.pythonhosted.org/packages/12/76/4f2eaebf9ed718d910eb279877ee14cb93b32baec0745593dcd5c2f1ddf8/pymcdm-1.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7b9488ab4f9f7db88697fc148093ac65107e0d2fcfa61fb806b7d53cb53fdc2e",
                "md5": "49c2e919ec1b7bc679aa86123ee6bf08",
                "sha256": "eada89dd87897373a0c3c82484a83a09d81564419c927c66161890b5df67da8a"
            },
            "downloads": -1,
            "filename": "pymcdm-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "49c2e919ec1b7bc679aa86123ee6bf08",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 104508,
            "upload_time": "2024-12-29T10:00:39",
            "upload_time_iso_8601": "2024-12-29T10:00:39.898759Z",
            "url": "https://files.pythonhosted.org/packages/7b/94/88ab4f9f7db88697fc148093ac65107e0d2fcfa61fb806b7d53cb53fdc2e/pymcdm-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-29 10:00:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kotbaton",
    "github_project": "pymcdm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pymcdm"
}
        
Elapsed time: 0.36152s