Name | pymcdm JSON |
Version |
1.2.1
JSON |
| download |
home_page | None |
Summary | Python library for Multi-Criteria Decision-Making |
upload_time | 2024-04-15 06:15:16 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.11 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# PyMCDM
Python 3 library for solving multi-criteria decision-making (MCDM) problems.
Documentation is avaliable on [readthedocs](https://pymcdm.readthedocs.io/en/master/).
___
# Installation
You can download and install `pymcdm` library using pip:
```Bash
pip install pymcdm
```
You can run all tests with following command from the root of the project:
```Bash
python -m unittest -v
```
___
# Citing pymcdm
If usage of the pymcdm library lead to a scientific publication, please
acknowledge this fact by citing "[_Kizielewicz, B., Shekhovtsov, A.,
& Sałabun, W. (2023). pymcdm—The universal library for solving multi-criteria
decision-making problems. SoftwareX, 22, 101368._](https://doi.org/10.1016/j.softx.2023.101368)"
Or using BibTex:
```bibtex
@article{kizielewicz2023pymcdm,
title={pymcdm—The universal library for solving multi-criteria decision-making problems},
author={Kizielewicz, Bart{\l}omiej and Shekhovtsov, Andrii and Sa{\l}abun, Wojciech},
journal={SoftwareX},
volume={22},
pages={101368},
year={2023},
publisher={Elsevier}
}
```
DOI: [https://doi.org/10.1016/j.softx.2023.101368](https://doi.org/10.1016/j.softx.2023.101368)
___
# Available methods
The library contains:
* MCDA methods:
| Acronym | Method Name | Reference |
| :-------------------- | --------------------------------------------------------------------------------- | :--------------------------------------: |
| TOPSIS | Technique for the Order of Prioritisation by Similarity to Ideal Solution | [[1]](#c1) |
| VIKOR | VIseKriterijumska Optimizacija I Kompromisno Resenje | [[2]](#c2) |
| COPRAS | COmplex PRoportional ASsessment | [[3]](#c3) |
| PROMETHEE I & II | Preference Ranking Organization METHod for Enrichment of Evaluations I & II | [[4]](#c4) |
| COMET | Characteristic Objects Method | [[5]](#c5) |
| SPOTIS | Stable Preference Ordering Towards Ideal Solution | [[6]](#c6) |
| ARAS | Additive Ratio ASsessment | [[7]](#c7),[[8]](#c8) |
| COCOSO | COmbined COmpromise SOlution | [[9]](#c9) |
| CODAS | COmbinative Distance-based ASsessment | [[10]](#c10) |
| EDAS | Evaluation based on Distance from Average Solution | [[11]](#c11),[[12]](#c12) |
| MABAC | Multi-Attributive Border Approximation area Comparison | [[13]](#c13) |
| MAIRCA | MultiAttributive Ideal-Real Comparative Analysis | [[14]](#c14),[[15]](#c15),[[16]](#c16) |
| MARCOS | Measurement Alternatives and Ranking according to COmpromise Solution | [[17]](#c17),[[18]](#c18) |
| OCRA | Operational Competitiveness Ratings | [[19]](#c19),[[20]](#c20) |
| MOORA | Multi-Objective Optimization Method by Ratio Analysis | [[21]](#c21),[[22]](#c22) |
| RIM | Reference Ideal Method | [[48]](#c48) |
| ERVD | Election Based on relative Value Distances | [[49]](#c49) |
| PROBID | Preference Ranking On the Basis of Ideal-average Distance | [[50]](#c50) |
| WSM | Weighted Sum Model | [[51]](#c51) |
| WPM | Weighted Product Model | [[52]](#c52) |
| WASPAS | Weighted Aggregated Sum Product ASSessment | [[53]](#c53) |
| RAM | Root Assesment Method | [[62]](#c62) |
* Weighting methods:
| Acronym | Method Name | Reference |
|----------- |--------------------------------------------------------- |:----------------------------------------: |
| - | Equal/Mean weights | [[23]](#c23) |
| - | Entropy weights | [[23]](#c23),[[24]](#c24),[[25]](#c25) |
| STD | Standard Deviation weights | [[23]](#c23),[[26]](#c26) |
| MEREC | MEthod based on the Removal Effects of Criteria | [[27]](#c27) |
| CRITIC | CRiteria Importance Through Intercriteria Correlation | [[28]](#c28),[[29]](#c29) |
| CILOS | Criterion Impact LOS | [[30]](#c30) |
| IDOCRIW | Integrated Determination of Objective CRIteria Weight | [[30]](#c30) |
| - | Angular/Angle weights | [[31]](#c31) |
| - | Gini Coeficient weights | [[32]](#c32) |
| - | Statistical variance weights | [[33]](#c33) |
* Normalization methods:
| Method Name | Reference |
|-------------------------------------- |:--------------------------: |
| Weitendorf’s Linear Normalization | [[34]](#c34) |
| Maximum - Linear Normalization | [[35]](#c35) |
| Sum-Based Linear Normalization | [[36]](#c36) |
| Vector Normalization | [[36]](#c36),[[37]](#c37) |
| Logarithmic Normalization | [[36]](#c36),[[37]](#c37) |
| Linear Normalization (Max-Min) | [[34]](#c34),[[38]](#c38) |
| Non-linear Normalization (Max-Min) | [[39]](#c39) |
| Enhanced Accuracy Normalization | [[40]](#c40) |
| Lai and Hwang Normalization | [[38]](#c38) |
| Zavadskas and Turskis Normalization | [[38]](#c38) |
* Correlation coefficients:
| Coefficient name | Reference |
|---------------------------------------------------- |:-------------------------: |
| Spearman's rank correlation coefficient | [[41]](#c41),[[42]](#c42) |
| Pearson correlation coefficient | [[43]](#c43) |
| Weighted Spearman’s rank correlation coefficient | [[44]](#c44) |
| Rank Similarity Coefficient | [[45]](#c45) |
| Kendall rank correlation coefficient | [[46]](#c46) |
| Goodman and Kruskal's gamma | [[47]](#c47) |
| Drastic Weighted Similarity (draWS) | [[59]](#c59) |
| Weights Similarity Coefficient (WSC) | [[60]](#c60) |
| Weights Similarity Coefficient 2 (WSC2) | [[60]](#c60) |
* Helpers
| Helpers submodule | Description |
|--------------------- |------------ |
| `rankdata` | Create ranking vector from the preference vector. Smaller preference values has higher positions in the ranking. |
| `rrankdata` | Alias to the `rankdata` which reverse the sorting order. |
| `correlation_matrix` | Create the correlation matrix for given coefficient from several the several rankings. |
| `normalize_matrix` | Normalize decision matrix column by column using given normalization and criteria types. |
* COMET Tools
| Class/Function | Description | Reference |
|----------------------|----------------------------------------------------------------------------------------------------|:-------------:|
| `MethodExpert` | Class which allows to evaluate CO in COMET using any MCDA method. | [[56]](#c56) |
| `ManualExpert` | Class which allows to evaluate CO in COMET manually by pairwise comparisons. | [[57]](#c57) |
| `FunctionExpert` | Class which allows to evaluate CO in COMET using any expert function. | [[58]](#c58) |
| `CompromiseExpert` | Class which allows to evaluate CO in COMET using compromise between several different methods. | - |
| `TriadSupportExpert` | Class which allows to evaluate CO in COMET manually but with triads support. | In Press |
| `ESPExpert` | Class which allows to identify MEJ using expert-defined Expected Solution Points. | [[61]](#c61) |
| `triads_consistency` | Function to which evaluates consistency of the MEJ matrix. | [[55]](#c55) |
| `Submodel` | Class mostly for internal use in StructuralCOMET class. | [[54]](#c54) |
| `StructuralCOMET` | Class which allows to split a decision problem into submodels to be evaluated by the COMET method. | [[54]](#c54) |
___
# Usage example
Here's a small example of how use this library to solve MCDM problem.
For more examples with explanation see [examples](https://gitlab.com/shekhand/mcda/-/blob/master/examples/examples.ipynb).
```python
import numpy as np
from pymcdm.methods import TOPSIS
from pymcdm.helpers import rrankdata
# Define decision matrix (2 criteria, 4 alternative)
alts = np.array([
[4, 4],
[1, 5],
[3, 2],
[4, 2]
], dtype='float')
# Define weights and types
weights = np.array([0.5, 0.5])
types = np.array([1, -1])
# Create object of the method
topsis = TOPSIS()
# Determine preferences and ranking for alternatives
pref = topsis(alts, weights, types)
ranking = rrankdata(pref)
for r, p in zip(ranking, pref):
print(r, p)
```
And the output of this example (numbers are rounded):
```bash
3 0.6126
4 0.0
2 0.7829
1 1.0
```
---
# References
<a name="c1">[1]</a> Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.
<a name="c2">[2]</a> Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water resources research, 16(1), 14-20.
<a name="c3">[3]</a> Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-attribute assessment of road design solutions by using the COPRAS method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195-203.
<a name="c4">[4]</a> Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238.
<a name="c5">[5]</a> Sałabun, W., Karczmarczyk, A., Wątróbski, J., & Jankowski, J. (2018, November). Handling data uncertainty in decision making with COMET. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1478-1484). IEEE.
<a name="c6">[6]</a> Dezert, J., Tchamova, A., Han, D., & Tacnet, J. M. (2020, July). The spotis rank reversal free method for multi-criteria decision-making support. In 2020 IEEE 23rd International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE.
<a name="c7">[7]</a> Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and economic development of economy, 16(2), 159-172.
<a name="c8">[8]</a> Stanujkic, D., Djordjevic, B., & Karabasevic, D. (2015). Selection of candidates in the process of recruitment and selection of personnel based on the SWARA and ARAS methods. Quaestus, (7), 53.
<a name="c9">[9]</a> Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision.
<a name="c10">[10]</a> Badi, I., Shetwan, A. G., & Abdulshahed, A. M. (2017, September). Supplier selection using COmbinative Distance-based ASsessment (CODAS) method for multi-criteria decision-making. In Proceedings of The 1st International Conference on Management, Engineering and Environment (ICMNEE) (pp. 395-407).
<a name="c11">[11]</a> Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.
<a name="c12">[12]</a> Yazdani, M., Torkayesh, A. E., Santibanez-Gonzalez, E. D., & Otaghsara, S. K. (2020). Evaluation of renewable energy resources using integrated Shannon Entropy—EDAS model. Sustainable Operations and Computers, 1, 35-42.
<a name="c13">[13]</a> Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028.
<a name="c14">[14]</a> Gigović, L., Pamučar, D., Bajić, Z., & Milićević, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372.
<a name="c15">[15]</a> Pamucar, D. S., Pejcic Tarle, S., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATELMAIRCA model: sustainable selection of a location for the development of multimodal logistics centre. Economic research-Ekonomska istraživanja, 31(1), 1641-1665.
<a name="c16">[16]</a> Aksoy, E. (2021). An Analysis on Turkey's Merger and Acquisition Activities: MAIRCA Method. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 12(1), 1-11.
<a name="c17">[17]</a> Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231.
<a name="c18">[18]</a> Ulutaş, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karaköy, Ç. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672.
<a name="c19">[19]</a> Parkan, C. (1994). Operational competitiveness ratings of production units. Managerial and Decision Economics, 15(3), 201-221.
<a name="c20">[20]</a> Işık, A. T., & Adalı, E. A. (2016). A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem. International Journal of Advanced Operations Management, 8(2), 140-151.
<a name="c21">[21]</a> Brauers, W. K. (2003). Optimization methods for a stakeholder society: a revolution in economic thinking by multi-objective optimization (Vol. 73). Springer Science & Business Media.
<a name="c22">[22]</a> Hussain, S. A. I., & Mandal, U. K. (2016). Entropy based MCDM approach for Selection of material. In National Level Conference on Engineering Problems and Application of Mathematics (pp. 1-6).
<a name="c23">[23]</a> Sałabun, W., Wątróbski, J., & Shekhovtsov, A. (2020). Are mcda methods benchmarkable? a comparative study of topsis, vikor, copras, and promethee ii methods. Symmetry, 12(9), 1549.
<a name="c24">[24]</a> Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon’s entropy and multi attribute decision making. Entropy, 12(1), 53-62.
<a name="c25">[25]</a> Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia engineering, 26, 2085-2091.
<a name="c26">[26]</a> Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1-2), 1-12.
<a name="c27">[27]</a> Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525.
<a name="c28">[28]</a> Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770.
<a name="c29">[29]</a> Tuş, A., & Adalı, E. A. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56(2), 528-538.
<a name="c30">[30]</a> Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283.
<a name="c31">[31]</a> Shuai, D., Zongzhun, Z., Yongji, W., & Lei, L. (2012, May). A new angular method to determine the objective weights. In 2012 24th Chinese Control and Decision Conference (CCDC) (pp. 3889-3892). IEEE.
<a name="c32">[32]</a> Li, G., & Chi, G. (2009, December). A new determining objective weights method-gini coefficient weight. In 2009 First International Conference on Information Science and Engineering (pp. 3726-3729). IEEE.
<a name="c33">[33]</a> Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738-4747.
<a name="c34">[34]</a> Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35, 445-469.
<a name="c35">[35]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.
<a name="c36">[36]</a> Gardziejczyk, W., & Zabicki, P. (2017). Normalization and variant assessment methods in selection of road alignment variants–case study. Journal of civil engineering and management, 23(4), 510-523.
<a name="c37">[37]</a> Zavadskas, E. K., & Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, 19(2), 303-314.
<a name="c38">[38]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.
<a name="c39">[39]</a> Peldschus, F., Vaigauskas, E., & Zavadskas, E. K. (1983). Technologische entscheidungen bei der berücksichtigung mehrerer Ziehle. Bauplanung Bautechnik, 37(4), 173-175.
<a name="c40">[40]</a> Zeng, Q. L., Li, D. D., & Yang, Y. B. (2013). VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management. Journal of medical systems, 37(2), 1-9.
<a name="c41">[41]</a> Binet, A., & Henri, V. (1898). La fatigue intellectuelle (Vol. 1). Schleicher frères.
<a name="c42">[42]</a> Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 1904‐1920, 3(3), 271-295.
<a name="c43">[43]</a> Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. proceedings of the royal society of London, 58(347-352), 240-242.
<a name="c44">[44]</a> Dancelli, L., Manisera, M., & Vezzoli, M. (2013). On two classes of Weighted Rank Correlation measures deriving from the Spearman’s ρ. In Statistical Models for Data Analysis (pp. 107-114). Springer, Heidelberg.
<a name="c45">[45]</a> Sałabun, W., & Urbaniak, K. (2020, June). A new coefficient of rankings similarity in decision-making problems. In International Conference on Computational Science (pp. 632-645). Springer, Cham.
<a name="c46">[46]</a> Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.
<a name="c47">[47]</a> Goodman, L. A., & Kruskal, W. H. (1979). Measures of association for cross classifications. Measures of association for cross classifications, 2-34.
<a name="c48">[48]</a> Cables, E., Lamata, M. T., & Verdegay, J. L. (2016). RIM-reference ideal method in multicriteria decision making. Information Sciences, 337, 1-10.
<a name="c49">[49]</a> Shyur, H. J., Yin, L., Shih, H. S., & Cheng, C. B. (2015). A multiple criteria decision making method based on relative value distances. Foundations of Computing and Decision Sciences, 40(4), 299-315.
<a name="c50">[50]</a> Wang, Z., Rangaiah, G. P., & Wang, X. (2021). Preference ranking on the basis of ideal-average distance method for multi-criteria decision-making. Industrial & Engineering Chemistry Research, 60(30), 11216-11230.
<a name="c51">[51]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.
<a name="c52">[52]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.
<a name="c53">[53]</a> Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.
<a name="c54">[54]</a> Shekhovtsov, A., Kołodziejczyk, J., & Sałabun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541.
<a name="c55">[55]</a> Sałabun, W., Shekhovtsov, A., & Kizielewicz, B. (2021, June). A new consistency coefficient in the multi-criteria decision analysis domain. In Computational Science–ICCS 2021: 21st International Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part I (pp. 715-727). Cham: Springer International Publishing.
<a name="c56">[56]</a> Paradowski, B., Bączkiewicz, A., & Watrąbski, J. (2021). Towards proper consumer choices-MCDM based product selection. Procedia Computer Science, 192, 1347-1358.
<a name="c57">[57]</a> Sałabun, W. (2015). The characteristic objects method: A new distance‐based approach to multicriteria decision‐making problems. Journal of Multi‐Criteria Decision Analysis, 22(1-2), 37-50.
<a name="c58">[58]</a> Sałabun, W., & Piegat, A. (2017). Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artificial Intelligence Review, 48, 557-571.
<a name="c59">[59]</a> Sałabun, W., & Shekhovtsov, A. (2023, September). An Innovative Drastic Metric for Ranking Similarity in Decision-Making Problems. In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 731-738). IEEE.
<a name="c60">[60]</a> Shekhovtsov, A. (2023). Evaluating the Performance of Subjective Weighting Methods for Multi-Criteria Decision-Making using a novel Weights Similarity Coefficient. Procedia Computer Science, 225, 4785-4794.
<a name="c61">[61]</a> Shekhovtsov, A., Kizielewicz, B., & Sałabun, W. (2023). Advancing individual decision-making: An extension of the characteristic objects method using expected solution point. Information Sciences, 647, 119456.
<a name="c62">[62]</a> Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): a novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695.
Raw data
{
"_id": null,
"home_page": null,
"name": "pymcdm",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Andrii Shekhovtsov <andrii-shekhovtsov@zut.edu.pl>, Bart\u0142omiej Kizielewicz <bartlomiej-kizielewicz@zut.edu.pl>",
"download_url": "https://files.pythonhosted.org/packages/11/7c/750ac00626a085124942f545875d982aac5e9ff1e1e491914f05d5a1f943/pymcdm-1.2.1.tar.gz",
"platform": null,
"description": "# PyMCDM\n\nPython 3 library for solving multi-criteria decision-making (MCDM) problems.\n\nDocumentation is avaliable on [readthedocs](https://pymcdm.readthedocs.io/en/master/).\n\n___\n\n# Installation\n\nYou can download and install `pymcdm` library using pip:\n\n```Bash\npip install pymcdm\n```\n\nYou can run all tests with following command from the root of the project:\n\n```Bash\npython -m unittest -v\n```\n\n___\n\n# Citing pymcdm\n\nIf usage of the pymcdm library lead to a scientific publication, please \nacknowledge this fact by citing \"[_Kizielewicz, B., Shekhovtsov, A., \n& Sa\u0142abun, W. (2023). pymcdm\u2014The universal library for solving multi-criteria \ndecision-making problems. SoftwareX, 22, 101368._](https://doi.org/10.1016/j.softx.2023.101368)\"\n\nOr using BibTex:\n```bibtex\n@article{kizielewicz2023pymcdm,\n title={pymcdm\u2014The universal library for solving multi-criteria decision-making problems},\n author={Kizielewicz, Bart{\\l}omiej and Shekhovtsov, Andrii and Sa{\\l}abun, Wojciech},\n journal={SoftwareX},\n volume={22},\n pages={101368},\n year={2023},\n publisher={Elsevier}\n}\n```\n\nDOI: [https://doi.org/10.1016/j.softx.2023.101368](https://doi.org/10.1016/j.softx.2023.101368)\n\n___\n\n# Available methods\n\nThe library contains:\n\n* MCDA methods:\n\n| Acronym \t| Method Name | Reference |\n| :-------------------- | --------------------------------------------------------------------------------- | :--------------------------------------: |\n| TOPSIS \t| Technique for the Order of Prioritisation by Similarity to Ideal Solution | [[1]](#c1) |\n| VIKOR \t| VIseKriterijumska Optimizacija I Kompromisno Resenje | [[2]](#c2) |\n| COPRAS \t| COmplex PRoportional ASsessment | [[3]](#c3) |\n| PROMETHEE I & II \t| Preference Ranking Organization METHod for Enrichment of Evaluations I & II | [[4]](#c4) |\n| COMET \t| Characteristic Objects Method | [[5]](#c5) |\n| SPOTIS \t| Stable Preference Ordering Towards Ideal Solution | [[6]](#c6) |\n| ARAS \t| Additive Ratio ASsessment | [[7]](#c7),[[8]](#c8) |\n| COCOSO \t| COmbined COmpromise SOlution | [[9]](#c9) |\n| CODAS \t| COmbinative Distance-based ASsessment | [[10]](#c10) |\n| EDAS \t| Evaluation based on Distance from Average Solution | [[11]](#c11),[[12]](#c12) |\n| MABAC \t| Multi-Attributive Border Approximation area Comparison | [[13]](#c13) |\n| MAIRCA \t| MultiAttributive Ideal-Real Comparative Analysis | [[14]](#c14),[[15]](#c15),[[16]](#c16) |\n| MARCOS \t| Measurement Alternatives and Ranking according to COmpromise Solution | [[17]](#c17),[[18]](#c18) |\n| OCRA \t| Operational Competitiveness Ratings | [[19]](#c19),[[20]](#c20) |\n| MOORA \t| Multi-Objective Optimization Method by Ratio Analysis | [[21]](#c21),[[22]](#c22) |\n| RIM \t| Reference Ideal Method | [[48]](#c48) |\n| ERVD \t| Election Based on relative Value Distances | [[49]](#c49) |\n| PROBID | Preference Ranking On the Basis of Ideal-average Distance | [[50]](#c50) |\n| WSM | Weighted Sum Model | [[51]](#c51) |\n| WPM | Weighted Product Model | [[52]](#c52) |\n| WASPAS | Weighted Aggregated Sum Product ASSessment | [[53]](#c53) |\n| RAM \t| Root Assesment Method | [[62]](#c62) |\n\n* Weighting methods:\n\n| Acronym \t| Method Name \t| Reference \t|\n|-----------\t|---------------------------------------------------------\t|:----------------------------------------:\t|\n| - \t| Equal/Mean weights \t| [[23]](#c23) \t|\n| - \t| Entropy weights \t| [[23]](#c23),[[24]](#c24),[[25]](#c25) \t|\n| STD \t| Standard Deviation weights \t| [[23]](#c23),[[26]](#c26) \t|\n| MEREC \t| MEthod based on the Removal Effects of Criteria \t| [[27]](#c27) \t|\n| CRITIC \t| CRiteria Importance Through Intercriteria Correlation \t| [[28]](#c28),[[29]](#c29) \t|\n| CILOS \t| Criterion Impact LOS \t| [[30]](#c30) \t|\n| IDOCRIW \t| Integrated Determination of Objective CRIteria Weight \t| [[30]](#c30) \t|\n| - \t| Angular/Angle weights \t| [[31]](#c31) \t|\n| - \t| Gini Coeficient weights \t| [[32]](#c32) \t|\n| - \t| Statistical variance weights \t| [[33]](#c33) \t|\n\n* Normalization methods:\n\n| Method Name \t| Reference \t|\n|--------------------------------------\t|:--------------------------:\t|\n| Weitendorf\u2019s Linear Normalization \t| [[34]](#c34) \t|\n| Maximum - Linear Normalization \t| [[35]](#c35) \t|\n| Sum-Based Linear Normalization \t| [[36]](#c36) \t|\n| Vector Normalization \t| [[36]](#c36),[[37]](#c37) \t|\n| Logarithmic Normalization \t| [[36]](#c36),[[37]](#c37) \t|\n| Linear Normalization (Max-Min) \t| [[34]](#c34),[[38]](#c38) \t|\n| Non-linear Normalization (Max-Min) \t| [[39]](#c39) \t|\n| Enhanced Accuracy Normalization \t| [[40]](#c40) \t|\n| Lai and Hwang Normalization | [[38]](#c38) |\n| Zavadskas and Turskis Normalization | [[38]](#c38) |\n\n* Correlation coefficients:\n\n| Coefficient name \t| Reference \t|\n|----------------------------------------------------\t|:-------------------------:\t|\n| Spearman's rank correlation coefficient \t| [[41]](#c41),[[42]](#c42) \t|\n| Pearson correlation coefficient \t| [[43]](#c43) \t|\n| Weighted Spearman\u2019s rank correlation coefficient \t| [[44]](#c44) \t|\n| Rank Similarity Coefficient \t| [[45]](#c45) \t|\n| Kendall rank correlation coefficient \t| [[46]](#c46) \t|\n| Goodman and Kruskal's gamma \t| [[47]](#c47) \t|\n| Drastic Weighted Similarity (draWS) | [[59]](#c59) \t|\n| Weights Similarity Coefficient (WSC) | [[60]](#c60) \t|\n| Weights Similarity Coefficient 2 (WSC2) | [[60]](#c60) \t|\n\n* Helpers\n\n| Helpers submodule | Description |\n|--------------------- |------------ |\n| `rankdata` | Create ranking vector from the preference vector. Smaller preference values has higher positions in the ranking. |\n| `rrankdata` | Alias to the `rankdata` which reverse the sorting order. |\n| `correlation_matrix` | Create the correlation matrix for given coefficient from several the several rankings. |\n| `normalize_matrix` | Normalize decision matrix column by column using given normalization and criteria types. |\n\n* COMET Tools\n\n| Class/Function | Description | Reference |\n|----------------------|----------------------------------------------------------------------------------------------------|:-------------:|\n| `MethodExpert` | Class which allows to evaluate CO in COMET using any MCDA method. | [[56]](#c56) |\n| `ManualExpert` | Class which allows to evaluate CO in COMET manually by pairwise comparisons. | [[57]](#c57) |\n| `FunctionExpert` | Class which allows to evaluate CO in COMET using any expert function. | [[58]](#c58) |\n| `CompromiseExpert` | Class which allows to evaluate CO in COMET using compromise between several different methods. | - |\n| `TriadSupportExpert` | Class which allows to evaluate CO in COMET manually but with triads support. | In Press |\n| `ESPExpert` | Class which allows to identify MEJ using expert-defined Expected Solution Points. | [[61]](#c61) |\n| `triads_consistency` | Function to which evaluates consistency of the MEJ matrix. | [[55]](#c55) |\n| `Submodel` | Class mostly for internal use in StructuralCOMET class. | [[54]](#c54) |\n| `StructuralCOMET` | Class which allows to split a decision problem into submodels to be evaluated by the COMET method. | [[54]](#c54) |\n\n\n___\n# Usage example\n\nHere's a small example of how use this library to solve MCDM problem.\nFor more examples with explanation see [examples](https://gitlab.com/shekhand/mcda/-/blob/master/examples/examples.ipynb).\n\n```python\nimport numpy as np\nfrom pymcdm.methods import TOPSIS\nfrom pymcdm.helpers import rrankdata\n\n# Define decision matrix (2 criteria, 4 alternative)\nalts = np.array([\n [4, 4],\n [1, 5],\n [3, 2],\n [4, 2]\n], dtype='float')\n\n# Define weights and types\nweights = np.array([0.5, 0.5])\ntypes = np.array([1, -1])\n\n# Create object of the method\ntopsis = TOPSIS()\n\n# Determine preferences and ranking for alternatives\npref = topsis(alts, weights, types)\nranking = rrankdata(pref)\n\nfor r, p in zip(ranking, pref):\n print(r, p)\n```\n\nAnd the output of this example (numbers are rounded):\n\n```bash\n3 0.6126\n4 0.0\n2 0.7829\n1 1.0\n```\n---\n# References\n\n<a name=\"c1\">[1]</a> Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.\n\n<a name=\"c2\">[2]</a> Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water resources research, 16(1), 14-20.\n\n<a name=\"c3\">[3]</a> Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-attribute assessment of road design solutions by using the COPRAS method. The Baltic Journal of Road and Bridge Engineering, 2(4), 195-203.\n\n<a name=\"c4\">[4]</a> Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238.\n\n<a name=\"c5\">[5]</a> Sa\u0142abun, W., Karczmarczyk, A., W\u0105tr\u00f3bski, J., & Jankowski, J. (2018, November). Handling data uncertainty in decision making with COMET. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1478-1484). IEEE.\n\n<a name=\"c6\">[6]</a> Dezert, J., Tchamova, A., Han, D., & Tacnet, J. M. (2020, July). The spotis rank reversal free method for multi-criteria decision-making support. In 2020 IEEE 23rd International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE.\n\n<a name=\"c7\">[7]</a> Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision\u2010making. Technological and economic development of economy, 16(2), 159-172.\n\n<a name=\"c8\">[8]</a> Stanujkic, D., Djordjevic, B., & Karabasevic, D. (2015). Selection of candidates in the process of recruitment and selection of personnel based on the SWARA and ARAS methods. Quaestus, (7), 53.\n\n<a name=\"c9\">[9]</a> Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision.\n\n<a name=\"c10\">[10]</a> Badi, I., Shetwan, A. G., & Abdulshahed, A. M. (2017, September). Supplier selection using COmbinative Distance-based ASsessment (CODAS) method for multi-criteria decision-making. In Proceedings of The 1st International Conference on Management, Engineering and Environment (ICMNEE) (pp. 395-407).\n\n<a name=\"c11\">[11]</a> Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.\n\n<a name=\"c12\">[12]</a> Yazdani, M., Torkayesh, A. E., Santibanez-Gonzalez, E. D., & Otaghsara, S. K. (2020). Evaluation of renewable energy resources using integrated Shannon Entropy\u2014EDAS model. Sustainable Operations and Computers, 1, 35-42.\n\n<a name=\"c13\">[13]</a> Pamu\u010dar, D., & \u0106irovi\u0107, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028.\n\n<a name=\"c14\">[14]</a> Gigovi\u0107, L., Pamu\u010dar, D., Baji\u0107, Z., & Mili\u0107evi\u0107, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372.\n\n<a name=\"c15\">[15]</a> Pamucar, D. S., Pejcic Tarle, S., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATELMAIRCA model: sustainable selection of a location for the development of multimodal logistics centre. Economic research-Ekonomska istra\u017eivanja, 31(1), 1641-1665.\n\n<a name=\"c16\">[16]</a> Aksoy, E. (2021). An Analysis on Turkey's Merger and Acquisition Activities: MAIRCA Method. G\u00fcm\u00fc\u015fhane \u00dcniversitesi Sosyal Bilimler Enstit\u00fcs\u00fc Elektronik Dergisi, 12(1), 1-11.\n\n<a name=\"c17\">[17]</a> Stevi\u0107, \u017d., Pamu\u010dar, D., Pu\u0161ka, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231.\n\n<a name=\"c18\">[18]</a> Uluta\u015f, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karak\u00f6y, \u00c7. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672.\n\n<a name=\"c19\">[19]</a> Parkan, C. (1994). Operational competitiveness ratings of production units. Managerial and Decision Economics, 15(3), 201-221.\n\n<a name=\"c20\">[20]</a> I\u015f\u0131k, A. T., & Adal\u0131, E. A. (2016). A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem. International Journal of Advanced Operations Management, 8(2), 140-151.\n\n<a name=\"c21\">[21]</a> Brauers, W. K. (2003). Optimization methods for a stakeholder society: a revolution in economic thinking by multi-objective optimization (Vol. 73). Springer Science & Business Media.\n\n<a name=\"c22\">[22]</a> Hussain, S. A. I., & Mandal, U. K. (2016). Entropy based MCDM approach for Selection of material. In National Level Conference on Engineering Problems and Application of Mathematics (pp. 1-6).\n\n<a name=\"c23\">[23]</a> Sa\u0142abun, W., W\u0105tr\u00f3bski, J., & Shekhovtsov, A. (2020). Are mcda methods benchmarkable? a comparative study of topsis, vikor, copras, and promethee ii methods. Symmetry, 12(9), 1549.\n\n<a name=\"c24\">[24]</a> Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon\u2019s entropy and multi attribute decision making. Entropy, 12(1), 53-62.\n\n<a name=\"c25\">[25]</a> Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia engineering, 26, 2085-2091.\n\n<a name=\"c26\">[26]</a> Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1-2), 1-12.\n\n<a name=\"c27\">[27]</a> Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525.\n\n<a name=\"c28\">[28]</a> Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770.\n\n<a name=\"c29\">[29]</a> Tu\u015f, A., & Adal\u0131, E. A. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56(2), 528-538.\n\n<a name=\"c30\">[30]</a> Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283.\n\n<a name=\"c31\">[31]</a> Shuai, D., Zongzhun, Z., Yongji, W., & Lei, L. (2012, May). A new angular method to determine the objective weights. In 2012 24th Chinese Control and Decision Conference (CCDC) (pp. 3889-3892). IEEE.\n\n<a name=\"c32\">[32]</a> Li, G., & Chi, G. (2009, December). A new determining objective weights method-gini coefficient weight. In 2009 First International Conference on Information Science and Engineering (pp. 3726-3729). IEEE.\n\n<a name=\"c33\">[33]</a> Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738-4747.\n\n<a name=\"c34\">[34]</a> Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35, 445-469.\n\n<a name=\"c35\">[35]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.\n\n<a name=\"c36\">[36]</a> Gardziejczyk, W., & Zabicki, P. (2017). Normalization and variant assessment methods in selection of road alignment variants\u2013case study. Journal of civil engineering and management, 23(4), 510-523.\n\n<a name=\"c37\">[37]</a> Zavadskas, E. K., & Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, 19(2), 303-314.\n\n<a name=\"c38\">[38]</a> Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342.\n\n<a name=\"c39\">[39]</a> Peldschus, F., Vaigauskas, E., & Zavadskas, E. K. (1983). Technologische entscheidungen bei der ber\u00fccksichtigung mehrerer Ziehle. Bauplanung Bautechnik, 37(4), 173-175.\n\n<a name=\"c40\">[40]</a> Zeng, Q. L., Li, D. D., & Yang, Y. B. (2013). VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management. Journal of medical systems, 37(2), 1-9.\n\n<a name=\"c41\">[41]</a> Binet, A., & Henri, V. (1898). La fatigue intellectuelle (Vol. 1). Schleicher fr\u00e8res.\n\n<a name=\"c42\">[42]</a> Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 1904\u20101920, 3(3), 271-295.\n\n<a name=\"c43\">[43]</a> Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. proceedings of the royal society of London, 58(347-352), 240-242.\n\n<a name=\"c44\">[44]</a> Dancelli, L., Manisera, M., & Vezzoli, M. (2013). On two classes of Weighted Rank Correlation measures deriving from the Spearman\u2019s \u03c1. In Statistical Models for Data Analysis (pp. 107-114). Springer, Heidelberg.\n\n<a name=\"c45\">[45]</a> Sa\u0142abun, W., & Urbaniak, K. (2020, June). A new coefficient of rankings similarity in decision-making problems. In International Conference on Computational Science (pp. 632-645). Springer, Cham.\n\n<a name=\"c46\">[46]</a> Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.\n\n<a name=\"c47\">[47]</a> Goodman, L. A., & Kruskal, W. H. (1979). Measures of association for cross classifications. Measures of association for cross classifications, 2-34.\n\n<a name=\"c48\">[48]</a> Cables, E., Lamata, M. T., & Verdegay, J. L. (2016). RIM-reference ideal method in multicriteria decision making. Information Sciences, 337, 1-10.\n\n<a name=\"c49\">[49]</a> Shyur, H. J., Yin, L., Shih, H. S., & Cheng, C. B. (2015). A multiple criteria decision making method based on relative value distances. Foundations of Computing and Decision Sciences, 40(4), 299-315.\n\n<a name=\"c50\">[50]</a> Wang, Z., Rangaiah, G. P., & Wang, X. (2021). Preference ranking on the basis of ideal-average distance method for multi-criteria decision-making. Industrial & Engineering Chemistry Research, 60(30), 11216-11230.\n\n<a name=\"c51\">[51]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.\n\n<a name=\"c52\">[52]</a> Fishburn, P. C., Murphy, A. H., & Isaacs, H. H. (1968). Sensitivity of decisions to probability estimation errors: A reexamination. Operations Research, 16(2), 254-267.\n\n<a name=\"c53\">[53]</a> Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.\n\n<a name=\"c54\">[54]</a> Shekhovtsov, A., Ko\u0142odziejczyk, J., & Sa\u0142abun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541.\n\n<a name=\"c55\">[55]</a> Sa\u0142abun, W., Shekhovtsov, A., & Kizielewicz, B. (2021, June). A new consistency coefficient in the multi-criteria decision analysis domain. In Computational Science\u2013ICCS 2021: 21st International Conference, Krakow, Poland, June 16\u201318, 2021, Proceedings, Part I (pp. 715-727). Cham: Springer International Publishing.\n\n<a name=\"c56\">[56]</a> Paradowski, B., B\u0105czkiewicz, A., & Watr\u0105bski, J. (2021). Towards proper consumer choices-MCDM based product selection. Procedia Computer Science, 192, 1347-1358.\n\n<a name=\"c57\">[57]</a> Sa\u0142abun, W. (2015). The characteristic objects method: A new distance\u2010based approach to multicriteria decision\u2010making problems. Journal of Multi\u2010Criteria Decision Analysis, 22(1-2), 37-50.\n\n<a name=\"c58\">[58]</a> Sa\u0142abun, W., & Piegat, A. (2017). Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artificial Intelligence Review, 48, 557-571.\n\n<a name=\"c59\">[59]</a> Sa\u0142abun, W., & Shekhovtsov, A. (2023, September). An Innovative Drastic Metric for Ranking Similarity in Decision-Making Problems. In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 731-738). IEEE.\n\n<a name=\"c60\">[60]</a> Shekhovtsov, A. (2023). Evaluating the Performance of Subjective Weighting Methods for Multi-Criteria Decision-Making using a novel Weights Similarity Coefficient. Procedia Computer Science, 225, 4785-4794.\n\n<a name=\"c61\">[61]</a> Shekhovtsov, A., Kizielewicz, B., & Sa\u0142abun, W. (2023). Advancing individual decision-making: An extension of the characteristic objects method using expected solution point. Information Sciences, 647, 119456.\n\n<a name=\"c62\">[62]</a> Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): a novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695.\n",
"bugtrack_url": null,
"license": null,
"summary": "Python library for Multi-Criteria Decision-Making",
"version": "1.2.1",
"project_urls": {
"Homepage": "https://gitlab.com/shekhand/mcda",
"Issues": "https://gitlab.com/shekhand/mcda/-/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8c0af5af0b180ca274d22717f3953060e119ebcd2226b53c780111df4e7e04ed",
"md5": "ec090526138bbbd8bbb35e48d29848e0",
"sha256": "bb555f88ba8460ca701a2c715d1cac7264715108cc58ec641901743fefb4e176"
},
"downloads": -1,
"filename": "pymcdm-1.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ec090526138bbbd8bbb35e48d29848e0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 99693,
"upload_time": "2024-04-15T06:15:15",
"upload_time_iso_8601": "2024-04-15T06:15:15.113519Z",
"url": "https://files.pythonhosted.org/packages/8c/0a/f5af0b180ca274d22717f3953060e119ebcd2226b53c780111df4e7e04ed/pymcdm-1.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "117c750ac00626a085124942f545875d982aac5e9ff1e1e491914f05d5a1f943",
"md5": "ac763a8d95c93dd37f215d73a4777e4d",
"sha256": "6a601b5d6a2c0bc55b5f21737849e8149ea5ee704c45463e43457de2195d7578"
},
"downloads": -1,
"filename": "pymcdm-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "ac763a8d95c93dd37f215d73a4777e4d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 78534,
"upload_time": "2024-04-15T06:15:16",
"upload_time_iso_8601": "2024-04-15T06:15:16.931346Z",
"url": "https://files.pythonhosted.org/packages/11/7c/750ac00626a085124942f545875d982aac5e9ff1e1e491914f05d5a1f943/pymcdm-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-15 06:15:16",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "shekhand",
"gitlab_project": "mcda",
"lcname": "pymcdm"
}