# PyMine
**Educational, Explainable, and Pure-Python Data Mining Library**
---
### 📘 Description
**PyMine** is a lightweight, dependency-free Python library built for learning, teaching, and exploring core data mining algorithms. Developed entirely from scratch using pure Python, PyMine prioritizes **transparency**, **explainability**, and **educational clarity** — making it a perfect fit for students, educators, and enthusiasts who want to understand *how* algorithms work under the hood.
---
### ⚙️ Features
- 📊 **Classification**: Decision Tree, Naive Bayes, Logistic Regression, K-Nearest Neighbors
- 🔍 **Clustering**: K-Means, DBSCAN, Hierarchical Clustering
- 🔁 **Association Rule Mining**: Apriori algorithm with support thresholds
- ⚠️ **Anomaly Detection**: Z-Score, Local Outlier Factor
- 🛠 **Preprocessing**: Scalers, Imputers, Label and One-Hot Encoders
- 📏 **Evaluation Metrics**: Accuracy, Precision, Recall, F1, Confusion Matrix, Silhouette Score
- 💬 **Explainability**: All models support `.explain()` and "what-if" transformation introspection
- 🔬 **No Dependencies**: Pure Python. No NumPy, pandas, or scikit-learn required
---
### 📦 Installation
```bash
pip install pymine-fashjr
Raw data
{
"_id": null,
"home_page": "https://github.com/fashjr/pymine",
"name": "pymine-edu",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "data mining, machine learning, education, explainable ai, classification, clustering, association rules, preprocessing, python from scratch, interpretable ml, pure python",
"author": "Fash & Chubike",
"author_email": "fashjr@icloud.com",
"download_url": "https://files.pythonhosted.org/packages/9b/0f/e8fde0b53fdd2ad98abae28202dd958b0928f59669d7de61357b44426f7c/pymine_edu-0.1.0.tar.gz",
"platform": null,
"description": "# PyMine\n\n**Educational, Explainable, and Pure-Python Data Mining Library**\n\n---\n\n### \ud83d\udcd8 Description\n\n**PyMine** is a lightweight, dependency-free Python library built for learning, teaching, and exploring core data mining algorithms. Developed entirely from scratch using pure Python, PyMine prioritizes **transparency**, **explainability**, and **educational clarity** \u2014 making it a perfect fit for students, educators, and enthusiasts who want to understand *how* algorithms work under the hood.\n\n---\n\n### \u2699\ufe0f Features\n\n- \ud83d\udcca **Classification**: Decision Tree, Naive Bayes, Logistic Regression, K-Nearest Neighbors \n- \ud83d\udd0d **Clustering**: K-Means, DBSCAN, Hierarchical Clustering \n- \ud83d\udd01 **Association Rule Mining**: Apriori algorithm with support thresholds \n- \u26a0\ufe0f **Anomaly Detection**: Z-Score, Local Outlier Factor \n- \ud83d\udee0 **Preprocessing**: Scalers, Imputers, Label and One-Hot Encoders \n- \ud83d\udccf **Evaluation Metrics**: Accuracy, Precision, Recall, F1, Confusion Matrix, Silhouette Score \n- \ud83d\udcac **Explainability**: All models support `.explain()` and \"what-if\" transformation introspection \n- \ud83d\udd2c **No Dependencies**: Pure Python. No NumPy, pandas, or scikit-learn required\n\n---\n\n### \ud83d\udce6 Installation\n\n```bash\npip install pymine-fashjr\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "An interpretable, transparent, and educational data mining library built from scratch in pure Python.",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/fashjr/pymine/issues",
"Documentation": "https://github.com/fashjr/pymine/wiki",
"Homepage": "https://github.com/fashjr/pymine",
"Source": "https://github.com/fashjr/pymine"
},
"split_keywords": [
"data mining",
" machine learning",
" education",
" explainable ai",
" classification",
" clustering",
" association rules",
" preprocessing",
" python from scratch",
" interpretable ml",
" pure python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "be42e7f8c8ada0f710f8d4d505ef50b4b388e7610c72dce2d4e8b3031a697460",
"md5": "a8cf11e8563d8fbd00623dce01525f11",
"sha256": "a641d19f797f21265461ae763be98739c620af25d64e709178952b7577dbf49d"
},
"downloads": -1,
"filename": "pymine_edu-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a8cf11e8563d8fbd00623dce01525f11",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 17337,
"upload_time": "2025-09-01T21:55:18",
"upload_time_iso_8601": "2025-09-01T21:55:18.513807Z",
"url": "https://files.pythonhosted.org/packages/be/42/e7f8c8ada0f710f8d4d505ef50b4b388e7610c72dce2d4e8b3031a697460/pymine_edu-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9b0fe8fde0b53fdd2ad98abae28202dd958b0928f59669d7de61357b44426f7c",
"md5": "64ffe6cec310add3f92b235f467b4759",
"sha256": "da40d6e82be11d625ffe5da70f2a5f17fd5360e16bed0dad98ae18282cd53b97"
},
"downloads": -1,
"filename": "pymine_edu-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "64ffe6cec310add3f92b235f467b4759",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 20040,
"upload_time": "2025-09-01T21:55:20",
"upload_time_iso_8601": "2025-09-01T21:55:20.014566Z",
"url": "https://files.pythonhosted.org/packages/9b/0f/e8fde0b53fdd2ad98abae28202dd958b0928f59669d7de61357b44426f7c/pymine_edu-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-01 21:55:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fashjr",
"github_project": "pymine",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pymine-edu"
}