# pymultipleis
[**Installation**](#installation)
| [**Examples**](https://github.com/richinex/pymultipleis/tree/main/docs/source/examples)
| [**Documentation**](https://pymultipleis.readthedocs.io/en/latest/index.html)
| [**Citing this work**](#citation)
A library for fitting a sequence of electrochemical impedance spectra.
- Implements algorithms for simultaneous and sequential fitting.
- Written in python and based on the [JAX library](https://github.com/google/jax).
- Leverages JAX's in-built automatic differentiation ([autodiff](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html)) of Python functions.
- Takes advantage of JAX's just-in-time compilation (JIT) of Python code to [XLA](https://www.tensorflow.org/xla) which runs on GPU or TPU hardware.
## Installation<a id="installation"></a>
pymultipleis requires the following:
- Python (>=3.9)
- [JAX](https://jax.readthedocs.io/en/latest/) (>=0.3.17)
Installing JAX on Linux is natively supported by the JAX team and instructions to do so can be found [here](https://github.com/google/jax#installation).
For Windows systems, the officially supported method is building directly from the source code (see [Building JAX from source](https://jax.readthedocs.io/en/latest/developer.html#building-from-source)).
However, it might be easier to use pre-built JAX wheels which can be found in this [Github repo](https://github.com/cloudhan/jax-windows-builder). Further details
on Windows installation is also provided in this [repo](https://github.com/Dipolar-Quantum-Gases/jaxfit/blob/main/README.md).
After installing JAX, you can now install pymultipleis via the following pip command
```bash
pip install pymultipleis
```
[Getting started with pymultipleis](https://pymultipleis.readthedocs.io/en/latest/quick-start-guide.html#) contains a quick start guide to
fitting your data with ``pymultipleis``.
## Examples
Jupyter notebooks which cover several aspects of ``pymultipleis`` can be found in [Examples](https://github.com/richinex/pymultipleis/tree/main/docs/source/examples).
## Documentation
Details about the ``pymultipleis`` API, can be found in the [reference documentation](https://pymultipleis.readthedocs.io/en/latest/index.html).
## Citing this work<a id="citation"></a>
If you use pymultipleis for academic research, you may cite the library as follows:
```
@misc{Chukwu2022,
author = {Chukwu, Richard},
title = {pymultipleis: a library for fitting a sequence of electrochemical impedance spectra},
publisher = {GitHub},
year = {2022},
url = {https://github.com/richinex/pymultipleis},
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/richinex/pymultipleis",
"name": "pymultipleis",
"maintainer": "Richard Chukwu",
"docs_url": null,
"requires_python": ">=3.8,<3.11",
"maintainer_email": "richinex@gmail.com",
"keywords": "electrochemical impedance spectroscopy, batch fitting, multiple, jax",
"author": "Richard Chukwu",
"author_email": "richinex@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a3/a7/cc86c9b64f46dec8fd844ac7382e6b26ccf84d84324b9f9bb33999b91fe3/pymultipleis-0.2.5.tar.gz",
"platform": null,
"description": "\n# pymultipleis\n\n[**Installation**](#installation)\n| [**Examples**](https://github.com/richinex/pymultipleis/tree/main/docs/source/examples)\n| [**Documentation**](https://pymultipleis.readthedocs.io/en/latest/index.html)\n| [**Citing this work**](#citation)\n\n\nA library for fitting a sequence of electrochemical impedance spectra.\n\n- Implements algorithms for simultaneous and sequential fitting.\n\n- Written in python and based on the [JAX library](https://github.com/google/jax).\n\n- Leverages JAX's in-built automatic differentiation ([autodiff](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html)) of Python functions.\n\n- Takes advantage of JAX's just-in-time compilation (JIT) of Python code to [XLA](https://www.tensorflow.org/xla) which runs on GPU or TPU hardware.\n\n\n## Installation<a id=\"installation\"></a>\n\npymultipleis requires the following:\n\n- Python (>=3.9)\n- [JAX](https://jax.readthedocs.io/en/latest/) (>=0.3.17)\n\nInstalling JAX on Linux is natively supported by the JAX team and instructions to do so can be found [here](https://github.com/google/jax#installation).\n\nFor Windows systems, the officially supported method is building directly from the source code (see [Building JAX from source](https://jax.readthedocs.io/en/latest/developer.html#building-from-source)).\nHowever, it might be easier to use pre-built JAX wheels which can be found in this [Github repo](https://github.com/cloudhan/jax-windows-builder). Further details\non Windows installation is also provided in this [repo](https://github.com/Dipolar-Quantum-Gases/jaxfit/blob/main/README.md).\n\n\nAfter installing JAX, you can now install pymultipleis via the following pip command\n\n```bash\npip install pymultipleis\n```\n\n[Getting started with pymultipleis](https://pymultipleis.readthedocs.io/en/latest/quick-start-guide.html#) contains a quick start guide to\nfitting your data with ``pymultipleis``.\n\n\n## Examples\n\nJupyter notebooks which cover several aspects of ``pymultipleis`` can be found in [Examples](https://github.com/richinex/pymultipleis/tree/main/docs/source/examples).\n\n## Documentation\n\nDetails about the ``pymultipleis`` API, can be found in the [reference documentation](https://pymultipleis.readthedocs.io/en/latest/index.html).\n\n\n## Citing this work<a id=\"citation\"></a>\n\nIf you use pymultipleis for academic research, you may cite the library as follows:\n\n```\n@misc{Chukwu2022,\n author = {Chukwu, Richard},\n title = {pymultipleis: a library for fitting a sequence of electrochemical impedance spectra},\n publisher = {GitHub},\n year = {2022},\n url = {https://github.com/richinex/pymultipleis},\n}\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "A library for fitting a sequence of electrochemical impedance spectra (JAX version).",
"version": "0.2.5",
"split_keywords": [
"electrochemical impedance spectroscopy",
" batch fitting",
" multiple",
" jax"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "160f350f9d7f5833698035e9646a8917f3739a85f935ad810ce295f932d6e775",
"md5": "b8ce54133d92acfcfb30b338b84f353d",
"sha256": "562724e889c31d551a59d6abf3c8f61606c841ce5e964f4463364d7835c533f8"
},
"downloads": -1,
"filename": "pymultipleis-0.2.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b8ce54133d92acfcfb30b338b84f353d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<3.11",
"size": 17125,
"upload_time": "2023-02-06T11:36:51",
"upload_time_iso_8601": "2023-02-06T11:36:51.940263Z",
"url": "https://files.pythonhosted.org/packages/16/0f/350f9d7f5833698035e9646a8917f3739a85f935ad810ce295f932d6e775/pymultipleis-0.2.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a3a7cc86c9b64f46dec8fd844ac7382e6b26ccf84d84324b9f9bb33999b91fe3",
"md5": "d8c4dbb99994f9037665b43061d18fe7",
"sha256": "d8f09414243347f806f9e2af51071ccef50922074bcc208bf37f101304679951"
},
"downloads": -1,
"filename": "pymultipleis-0.2.5.tar.gz",
"has_sig": false,
"md5_digest": "d8c4dbb99994f9037665b43061d18fe7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<3.11",
"size": 18325,
"upload_time": "2023-02-06T11:36:53",
"upload_time_iso_8601": "2023-02-06T11:36:53.241634Z",
"url": "https://files.pythonhosted.org/packages/a3/a7/cc86c9b64f46dec8fd844ac7382e6b26ccf84d84324b9f9bb33999b91fe3/pymultipleis-0.2.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-06 11:36:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "richinex",
"github_project": "pymultipleis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pymultipleis"
}