pynimate


Namepynimate JSON
Version 1.2.0 PyPI version JSON
download
home_page
SummaryPython package for statistical data animations
upload_time2023-04-15 21:11:04
maintainer
docs_urlNone
author
requires_python>=3.9
licenseMIT License (MIT)
keywords animations framework data plots
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![](https://github.com/julkaar9/pynimate/blob/gh-pages/assets/pynimate_logo2.png)

# Pynimate

[![PyPI](https://img.shields.io/pypi/v/pynimate?color=orange)](https://pypi.org/project/pynimate/)
[![Downloads](https://static.pepy.tech/personalized-badge/pynimate?period=total&units=international_system&left_color=grey&right_color=red&left_text=Downloads)](https://pepy.tech/project/pynimate) 
![Tests](https://github.com/julkaar9/pynimate/actions/workflows/tests.yml/badge.svg)
[![License](https://img.shields.io/pypi/l/pynimate?color=green)](https://github.com/julkaar9/pynimate/blob/main/LICENSE)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)  

Python package for statistical data animations.
![](https://github.com/julkaar9/pynimate/blob/main/docs/assets/example3.gif)

## Installation
### with pip
Pynimate is avaialbe at [pypi](https://pypi.org/project/pynimate/)
``` sh
pip install pynimate
```

## How to use
Pynimate expects pandas dataframe formatted in this manner:  
Where the time column is set to index.
```python
time, col1, col2, col3
2012   1     2     1
2013   1     1     2
2014   2     1.5   3
2015   2.5   2     3.5
```
## Bar Chart Example
```python
import pandas as pd
from matplotlib import pyplot as plt

import pynimate as nim

df = pd.DataFrame(
    {
        "time": ["1960-01-01", "1961-01-01", "1962-01-01"],
        "Afghanistan": [1, 2, 3],
        "Angola": [2, 3, 4],
        "Albania": [1, 2, 5],
        "USA": [5, 3, 4],
        "Argentina": [1, 4, 5],
    }
).set_index("time")

cnv = nim.Canvas()
bar = nim.Barhplot.from_df(df, "%Y-%m-%d", "2d")
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].year)
cnv.add_plot(bar)
cnv.animate()
plt.show()
``` 
## Documentation
The official documentation : https://julkaar9.github.io/pynimate/

## License
[MIT License (MIT)](LICENSE)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pynimate",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "animations,framework,data,plots",
    "author": "",
    "author_email": "julkar9 <julkar9dev@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/f0/40/652a4e8a94fa9ae41e860835e184d3def520a2a4e083d37f6c703e2199a2/pynimate-1.2.0.tar.gz",
    "platform": null,
    "description": "![](https://github.com/julkaar9/pynimate/blob/gh-pages/assets/pynimate_logo2.png)\n\n# Pynimate\n\n[![PyPI](https://img.shields.io/pypi/v/pynimate?color=orange)](https://pypi.org/project/pynimate/)\n[![Downloads](https://static.pepy.tech/personalized-badge/pynimate?period=total&units=international_system&left_color=grey&right_color=red&left_text=Downloads)](https://pepy.tech/project/pynimate) \n![Tests](https://github.com/julkaar9/pynimate/actions/workflows/tests.yml/badge.svg)\n[![License](https://img.shields.io/pypi/l/pynimate?color=green)](https://github.com/julkaar9/pynimate/blob/main/LICENSE)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)  \n\nPython package for statistical data animations.\n![](https://github.com/julkaar9/pynimate/blob/main/docs/assets/example3.gif)\n\n## Installation\n### with pip\nPynimate is avaialbe at [pypi](https://pypi.org/project/pynimate/)\n``` sh\npip install pynimate\n```\n\n## How to use\nPynimate expects pandas dataframe formatted in this manner:  \nWhere the time column is set to index.\n```python\ntime, col1, col2, col3\n2012   1     2     1\n2013   1     1     2\n2014   2     1.5   3\n2015   2.5   2     3.5\n```\n## Bar Chart Example\n```python\nimport pandas as pd\nfrom matplotlib import pyplot as plt\n\nimport pynimate as nim\n\ndf = pd.DataFrame(\n    {\n        \"time\": [\"1960-01-01\", \"1961-01-01\", \"1962-01-01\"],\n        \"Afghanistan\": [1, 2, 3],\n        \"Angola\": [2, 3, 4],\n        \"Albania\": [1, 2, 5],\n        \"USA\": [5, 3, 4],\n        \"Argentina\": [1, 4, 5],\n    }\n).set_index(\"time\")\n\ncnv = nim.Canvas()\nbar = nim.Barhplot.from_df(df, \"%Y-%m-%d\", \"2d\")\nbar.set_time(callback=lambda i, datafier: datafier.data.index[i].year)\ncnv.add_plot(bar)\ncnv.animate()\nplt.show()\n``` \n## Documentation\nThe official documentation : https://julkaar9.github.io/pynimate/\n\n## License\n[MIT License (MIT)](LICENSE)\n",
    "bugtrack_url": null,
    "license": "MIT License (MIT)",
    "summary": "Python package for statistical data animations",
    "version": "1.2.0",
    "split_keywords": [
        "animations",
        "framework",
        "data",
        "plots"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b8052fc3297d43881da3ee71c09711a9dcf89bf01efaadfe32acf96461010b85",
                "md5": "510b5b0010977859846f7a4867bcca7b",
                "sha256": "03e2b9855a2548eb10ae93a9b62954247ab1707227823507857d55af1d7b1227"
            },
            "downloads": -1,
            "filename": "pynimate-1.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "510b5b0010977859846f7a4867bcca7b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 20426,
            "upload_time": "2023-04-15T21:11:02",
            "upload_time_iso_8601": "2023-04-15T21:11:02.614231Z",
            "url": "https://files.pythonhosted.org/packages/b8/05/2fc3297d43881da3ee71c09711a9dcf89bf01efaadfe32acf96461010b85/pynimate-1.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f040652a4e8a94fa9ae41e860835e184d3def520a2a4e083d37f6c703e2199a2",
                "md5": "9f867a19c607b5384da2a02e591aaa4a",
                "sha256": "233b31c34180475c443608ba11d822ed9a9261c7e78c9fd2e95578a7e014ab1a"
            },
            "downloads": -1,
            "filename": "pynimate-1.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9f867a19c607b5384da2a02e591aaa4a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 19586,
            "upload_time": "2023-04-15T21:11:04",
            "upload_time_iso_8601": "2023-04-15T21:11:04.293260Z",
            "url": "https://files.pythonhosted.org/packages/f0/40/652a4e8a94fa9ae41e860835e184d3def520a2a4e083d37f6c703e2199a2/pynimate-1.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-15 21:11:04",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "pynimate"
}
        
Elapsed time: 0.09339s