pypeline-functions


Namepypeline-functions JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA compiliation of data pipeline scripts in Python
upload_time2024-11-29 23:51:26
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords elt data pipelines dlt pypeline
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # About

This is a compilation of my data pipeline scripts written in Python.

### Conventions

Each pipeline function is an executable python file that accepts flags to modify the specific configurations of the pipeline (i.e. MSSQL DB Name, GCS Bucket Name).

When loading data from a third-party source you can set the temporary destination of the data to the `data/` folder. After the data has been successfully ingested remove the file from the data folder.

### Folder Structure

- config/
    - contains any specific configurations that need to be modified within the Docker container
-  data/
    - a temporary landing zone for any data that is ingested from a third-party source
- functions/
    - contains all pipeline functions
- functions/utils/
    - contains all reusable code and can be organized futher as either a Source (where data is pulled from), or a Target (where data is placed)

# Setup

[//]: # (TODO: Review environment and dependency management best practices when using Hatch)

1. Create and activate a python virtual environment.

```
python3 -m venv venv
```

```
source /venv/bin/activate
```


2. Install python dependencies

```
pip install -r requirements.txt
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pypeline-functions",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "ELT, data pipelines, dlt, pypeline",
    "author": null,
    "author_email": "Miguel Habana <mighabana@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/20/4f/40020cb662201e3335e3d9b5c8c6efd059b4099b865634fbee600bd5021b/pypeline_functions-0.1.1.tar.gz",
    "platform": null,
    "description": "# About\n\nThis is a compilation of my data pipeline scripts written in Python.\n\n### Conventions\n\nEach pipeline function is an executable python file that accepts flags to modify the specific configurations of the pipeline (i.e. MSSQL DB Name, GCS Bucket Name).\n\nWhen loading data from a third-party source you can set the temporary destination of the data to the `data/` folder. After the data has been successfully ingested remove the file from the data folder.\n\n### Folder Structure\n\n- config/\n    - contains any specific configurations that need to be modified within the Docker container\n-  data/\n    - a temporary landing zone for any data that is ingested from a third-party source\n- functions/\n    - contains all pipeline functions\n- functions/utils/\n    - contains all reusable code and can be organized futher as either a Source (where data is pulled from), or a Target (where data is placed)\n\n# Setup\n\n[//]: # (TODO: Review environment and dependency management best practices when using Hatch)\n\n1. Create and activate a python virtual environment.\n\n```\npython3 -m venv venv\n```\n\n```\nsource /venv/bin/activate\n```\n\n\n2. Install python dependencies\n\n```\npip install -r requirements.txt\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A compiliation of data pipeline scripts in Python",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [
        "elt",
        " data pipelines",
        " dlt",
        " pypeline"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47c39dafe3f3fca37db0fcf3d946acb7745835908412f66bef8fd4e6df29b4d9",
                "md5": "e0f6e97af0a2bf40cd0d3d0c992a3787",
                "sha256": "192aa326d1bd3b0611045fee630b237b072ee744ef1f91dcab6d26a3918d772c"
            },
            "downloads": -1,
            "filename": "pypeline_functions-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e0f6e97af0a2bf40cd0d3d0c992a3787",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 17924,
            "upload_time": "2024-11-29T23:51:07",
            "upload_time_iso_8601": "2024-11-29T23:51:07.693207Z",
            "url": "https://files.pythonhosted.org/packages/47/c3/9dafe3f3fca37db0fcf3d946acb7745835908412f66bef8fd4e6df29b4d9/pypeline_functions-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "204f40020cb662201e3335e3d9b5c8c6efd059b4099b865634fbee600bd5021b",
                "md5": "b0c4734818905e2abe8d84a4be6e639b",
                "sha256": "10c66cc8f01d84e19cf9bf76c7d4495c4c0912460742701ebcaf994572caacec"
            },
            "downloads": -1,
            "filename": "pypeline_functions-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b0c4734818905e2abe8d84a4be6e639b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 12416,
            "upload_time": "2024-11-29T23:51:26",
            "upload_time_iso_8601": "2024-11-29T23:51:26.553624Z",
            "url": "https://files.pythonhosted.org/packages/20/4f/40020cb662201e3335e3d9b5c8c6efd059b4099b865634fbee600bd5021b/pypeline_functions-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-29 23:51:26",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pypeline-functions"
}
        
Elapsed time: 0.47486s