pypesto


Namepypesto JSON
Version 0.5.5 PyPI version JSON
download
home_pagehttps://github.com/icb-dcm/pypesto
Summarypython-based Parameter EStimation TOolbox
upload_time2025-01-13 14:46:45
maintainerPaul Jonas Jost, Maren Philipps, Domagoj Dorešić, Fabian Fröhlich
docs_urlNone
authorThe pyPESTO developers
requires_python>=3.10
licenseBSD-3-Clause
keywords parameter inference optimization sampling profiles ode amici systems biology
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyPESTO - Parameter EStimation TOolbox for python

<img src="https://raw.githubusercontent.com/ICB-DCM/pyPESTO/master/doc/logo/logo_wordmark.png" width="50%" alt="pyPESTO logo"/>

**pyPESTO** is a widely applicable and highly customizable toolbox for
parameter estimation.

[![PyPI](https://badge.fury.io/py/pypesto.svg)](https://badge.fury.io/py/pypesto)
[![CI](https://github.com/ICB-DCM/pyPESTO/workflows/CI/badge.svg)](https://github.com/ICB-DCM/pyPESTO/actions)
[![Coverage](https://codecov.io/gh/ICB-DCM/pyPESTO/branch/master/graph/badge.svg)](https://codecov.io/gh/ICB-DCM/pyPESTO)
[![Documentation](https://readthedocs.org/projects/pypesto/badge/?version=latest)](https://pypesto.readthedocs.io)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg)](https://doi.org/10.5281/zenodo.2553546)

## Feature overview

![](https://raw.githubusercontent.com/ICB-DCM/pyPESTO/main/doc/gfx/concept_pypesto.png)
*Feature overview of pyPESTO. Figure taken from the [Bioinformatics publication](https://doi.org/10.1093/bioinformatics/btad711).*

pyPESTO features include:

* Parameter estimation interfacing **multiple optimization algorithms** including
  multi-start local and global optimization. ([example](https://pypesto.readthedocs.io/en/latest/example/getting_started.html),
  [overview of optimizers](https://pypesto.readthedocs.io/en/latest/api/pypesto.optimize.html))
* Interface to **multiple simulators** including
  * [AMICI](https://github.com/AMICI-dev/AMICI/) for efficient simulation and
    sensitivity analysis of ordinary differential equation (ODE) models. ([example](https://pypesto.readthedocs.io/en/latest/example/amici.html))
  * [RoadRunner](https://libroadrunner.org/) for simulation of SBML models. ([example](https://pypesto.readthedocs.io/en/latest/example/roadrunner.html))
  * [Jax](https://jax.readthedocs.io/en/latest/quickstart.html) and
    [Julia](https://julialang.org) for automatic differentiation.
* **Uncertainty quantification** using various methods:
  * **Profile likelihoods**.
  * **Sampling** using Markov chain Monte Carlo (MCMC), parallel tempering, and
    interfacing other samplers including [emcee](https://emcee.readthedocs.io/en/stable/),
    [pymc](https://www.pymc.io/welcome.html) and
    [dynesty](https://dynesty.readthedocs.io/en/stable/).
    ([example](https://pypesto.readthedocs.io/en/latest/example/sampler_study.html))
  * **Variational inference**
* **Complete** parameter estimation **pipeline** for systems biology problems specified in
  [SBML](http://sbml.org/) and [PEtab](https://github.com/PEtab-dev/PEtab).
  ([example](https://pypesto.readthedocs.io/en/latest/example/petab_import.html))
* Parameter estimation pipelines for **different modes of data**:
  * **Relative (scaled and offset) data** as described in
    [Schmiester et al. (2020)](https://doi.org/10.1093/bioinformatics/btz581).
    ([example](https://pypesto.readthedocs.io/en/latest/example/relative_data.html))
  * **Ordinal data** as described in
    [Schmiester et al. (2020)](https://doi.org/10.1007/s00285-020-01522-w) and
    [Schmiester et al. (2021)](https://doi.org/10.1093/bioinformatics/btab512).
    ([example](https://pypesto.readthedocs.io/en/latest/example/ordinal_data.html))
  * **Censored data**. ([example](https://pypesto.readthedocs.io/en/latest/example/censored_data.html))
  * **Semiquantitative data** as described in [Doresic et al. (2024)](https://doi.org/10.1093/bioinformatics/btae210). ([example](https://pypesto.readthedocs.io/en/latest/example/semiquantitative_data.html))
* **Model selection**. ([example](https://pypesto.readthedocs.io/en/latest/example/model_selection.html))
* Various **visualization methods** to analyze parameter estimation results.

## Quick install

The simplest way to install **pyPESTO** is via pip:

```shell
pip3 install pypesto
```

More information is available here:
https://pypesto.readthedocs.io/en/latest/install.html

## Documentation

The documentation is hosted on readthedocs.io:
<https://pypesto.readthedocs.io>

## Examples

Multiple use cases are discussed in the documentation. In particular, there are
jupyter notebooks in the [doc/example](doc/example) directory.

## Contributing

We are happy about any contributions. For more information on how to contribute
to pyPESTO check out
<https://pypesto.readthedocs.io/en/latest/contribute.html>

## How to Cite

**Citeable DOI for the latest pyPESTO release:**
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg)](https://doi.org/10.5281/zenodo.2553546)

When using pyPESTO in your project, please cite
* Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P.,
  Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P.,
  Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A
  modular and scalable tool for parameter estimation for dynamic models,
  Bioinformatics, 2023, btad711, [doi:10.1093/bioinformatics/btad711](https://doi.org/10.1093/bioinformatics/btad711)

When presenting work that employs pyPESTO, feel free to use one of the icons in
[doc/logo/](doc/logo):

<p align="center">
  <img src="https://raw.githubusercontent.com/ICB-DCM/pyPESTO/main/doc/logo/logo.png" height="75" alt="pyPESTO Logo">
</p>

There is a list of [publications using pyPESTO](https://pypesto.readthedocs.io/en/latest/references.html).
If you used pyPESTO in your work, we are happy to include
your project, please let us know via a GitHub issue.

## References

pyPESTO supersedes [**PESTO**](https://github.com/ICB-DCM/PESTO/) a parameter estimation
toolbox for MATLAB, whose development is discontinued.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/icb-dcm/pypesto",
    "name": "pypesto",
    "maintainer": "Paul Jonas Jost, Maren Philipps, Domagoj Dore\u0161i\u0107, Fabian Fr\u00f6hlich",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "paul.jost@uni-bonn.de, maren.philipps@uni-bonn.de, domagoj.doresic@uni-bonn.de, fabian.frohlich@crick.ac.uk",
    "keywords": "parameter inference, optimization, sampling, profiles, ODE, AMICI, systems biology",
    "author": "The pyPESTO developers",
    "author_email": "yannik.schaelte@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/61/67/36edf1a4cd278ce851782810fd582d83aef2e0393926b37007cfb9353e86/pypesto-0.5.5.tar.gz",
    "platform": null,
    "description": "# pyPESTO - Parameter EStimation TOolbox for python\n\n<img src=\"https://raw.githubusercontent.com/ICB-DCM/pyPESTO/master/doc/logo/logo_wordmark.png\" width=\"50%\" alt=\"pyPESTO logo\"/>\n\n**pyPESTO** is a widely applicable and highly customizable toolbox for\nparameter estimation.\n\n[![PyPI](https://badge.fury.io/py/pypesto.svg)](https://badge.fury.io/py/pypesto)\n[![CI](https://github.com/ICB-DCM/pyPESTO/workflows/CI/badge.svg)](https://github.com/ICB-DCM/pyPESTO/actions)\n[![Coverage](https://codecov.io/gh/ICB-DCM/pyPESTO/branch/master/graph/badge.svg)](https://codecov.io/gh/ICB-DCM/pyPESTO)\n[![Documentation](https://readthedocs.org/projects/pypesto/badge/?version=latest)](https://pypesto.readthedocs.io)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg)](https://doi.org/10.5281/zenodo.2553546)\n\n## Feature overview\n\n![](https://raw.githubusercontent.com/ICB-DCM/pyPESTO/main/doc/gfx/concept_pypesto.png)\n*Feature overview of pyPESTO. Figure taken from the [Bioinformatics publication](https://doi.org/10.1093/bioinformatics/btad711).*\n\npyPESTO features include:\n\n* Parameter estimation interfacing **multiple optimization algorithms** including\n  multi-start local and global optimization. ([example](https://pypesto.readthedocs.io/en/latest/example/getting_started.html),\n  [overview of optimizers](https://pypesto.readthedocs.io/en/latest/api/pypesto.optimize.html))\n* Interface to **multiple simulators** including\n  * [AMICI](https://github.com/AMICI-dev/AMICI/) for efficient simulation and\n    sensitivity analysis of ordinary differential equation (ODE) models. ([example](https://pypesto.readthedocs.io/en/latest/example/amici.html))\n  * [RoadRunner](https://libroadrunner.org/) for simulation of SBML models. ([example](https://pypesto.readthedocs.io/en/latest/example/roadrunner.html))\n  * [Jax](https://jax.readthedocs.io/en/latest/quickstart.html) and\n    [Julia](https://julialang.org) for automatic differentiation.\n* **Uncertainty quantification** using various methods:\n  * **Profile likelihoods**.\n  * **Sampling** using Markov chain Monte Carlo (MCMC), parallel tempering, and\n    interfacing other samplers including [emcee](https://emcee.readthedocs.io/en/stable/),\n    [pymc](https://www.pymc.io/welcome.html) and\n    [dynesty](https://dynesty.readthedocs.io/en/stable/).\n    ([example](https://pypesto.readthedocs.io/en/latest/example/sampler_study.html))\n  * **Variational inference**\n* **Complete** parameter estimation **pipeline** for systems biology problems specified in\n  [SBML](http://sbml.org/) and [PEtab](https://github.com/PEtab-dev/PEtab).\n  ([example](https://pypesto.readthedocs.io/en/latest/example/petab_import.html))\n* Parameter estimation pipelines for **different modes of data**:\n  * **Relative (scaled and offset) data** as described in\n    [Schmiester et al. (2020)](https://doi.org/10.1093/bioinformatics/btz581).\n    ([example](https://pypesto.readthedocs.io/en/latest/example/relative_data.html))\n  * **Ordinal data** as described in\n    [Schmiester et al. (2020)](https://doi.org/10.1007/s00285-020-01522-w) and\n    [Schmiester et al. (2021)](https://doi.org/10.1093/bioinformatics/btab512).\n    ([example](https://pypesto.readthedocs.io/en/latest/example/ordinal_data.html))\n  * **Censored data**. ([example](https://pypesto.readthedocs.io/en/latest/example/censored_data.html))\n  * **Semiquantitative data** as described in [Doresic et al. (2024)](https://doi.org/10.1093/bioinformatics/btae210). ([example](https://pypesto.readthedocs.io/en/latest/example/semiquantitative_data.html))\n* **Model selection**. ([example](https://pypesto.readthedocs.io/en/latest/example/model_selection.html))\n* Various **visualization methods** to analyze parameter estimation results.\n\n## Quick install\n\nThe simplest way to install **pyPESTO** is via pip:\n\n```shell\npip3 install pypesto\n```\n\nMore information is available here:\nhttps://pypesto.readthedocs.io/en/latest/install.html\n\n## Documentation\n\nThe documentation is hosted on readthedocs.io:\n<https://pypesto.readthedocs.io>\n\n## Examples\n\nMultiple use cases are discussed in the documentation. In particular, there are\njupyter notebooks in the [doc/example](doc/example) directory.\n\n## Contributing\n\nWe are happy about any contributions. For more information on how to contribute\nto pyPESTO check out\n<https://pypesto.readthedocs.io/en/latest/contribute.html>\n\n## How to Cite\n\n**Citeable DOI for the latest pyPESTO release:**\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg)](https://doi.org/10.5281/zenodo.2553546)\n\nWhen using pyPESTO in your project, please cite\n* Sch\u00e4lte, Y., Fr\u00f6hlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P.,\n  Lakrisenko, P., Wang, D., Raim\u00fandez, E., Merkt, S., Schmiester, L., St\u00e4dter, P.,\n  Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A\n  modular and scalable tool for parameter estimation for dynamic models,\n  Bioinformatics, 2023, btad711, [doi:10.1093/bioinformatics/btad711](https://doi.org/10.1093/bioinformatics/btad711)\n\nWhen presenting work that employs pyPESTO, feel free to use one of the icons in\n[doc/logo/](doc/logo):\n\n<p align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/ICB-DCM/pyPESTO/main/doc/logo/logo.png\" height=\"75\" alt=\"pyPESTO Logo\">\n</p>\n\nThere is a list of [publications using pyPESTO](https://pypesto.readthedocs.io/en/latest/references.html).\nIf you used pyPESTO in your work, we are happy to include\nyour project, please let us know via a GitHub issue.\n\n## References\n\npyPESTO supersedes [**PESTO**](https://github.com/ICB-DCM/PESTO/) a parameter estimation\ntoolbox for MATLAB, whose development is discontinued.\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "python-based Parameter EStimation TOolbox",
    "version": "0.5.5",
    "project_urls": {
        "Bug Tracker": "https://github.com/icb-dcm/pypesto/issues",
        "Changelog": "https://pypesto.readthedocs.io/en/latest/changelog.html",
        "Documentation": "https://pypesto.readthedocs.io",
        "Download": "https://github.com/icb-dcm/pypesto/releases",
        "Homepage": "https://github.com/icb-dcm/pypesto"
    },
    "split_keywords": [
        "parameter inference",
        " optimization",
        " sampling",
        " profiles",
        " ode",
        " amici",
        " systems biology"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8d03f37824bb8d49976d960288d79768a4ac4e4dafc2bd672de280fa7049d44",
                "md5": "7d9e009c6e8480264e418232683e2de5",
                "sha256": "5e75b4ab439de9dae147f43d03616ed99d5393124606d8a8a5ae3b225b580b01"
            },
            "downloads": -1,
            "filename": "pypesto-0.5.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7d9e009c6e8480264e418232683e2de5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 414416,
            "upload_time": "2025-01-13T14:46:41",
            "upload_time_iso_8601": "2025-01-13T14:46:41.334442Z",
            "url": "https://files.pythonhosted.org/packages/c8/d0/3f37824bb8d49976d960288d79768a4ac4e4dafc2bd672de280fa7049d44/pypesto-0.5.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "616736edf1a4cd278ce851782810fd582d83aef2e0393926b37007cfb9353e86",
                "md5": "c26f1b35c0b534903e43d60a51bf3ace",
                "sha256": "8d5c70a354d3147d5f55d3d93502b66c0f4d615a33b7ca418b285ba423f1a2fe"
            },
            "downloads": -1,
            "filename": "pypesto-0.5.5.tar.gz",
            "has_sig": false,
            "md5_digest": "c26f1b35c0b534903e43d60a51bf3ace",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 338755,
            "upload_time": "2025-01-13T14:46:45",
            "upload_time_iso_8601": "2025-01-13T14:46:45.846090Z",
            "url": "https://files.pythonhosted.org/packages/61/67/36edf1a4cd278ce851782810fd582d83aef2e0393926b37007cfb9353e86/pypesto-0.5.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-13 14:46:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "icb-dcm",
    "github_project": "pypesto",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "pypesto"
}
        
Elapsed time: 2.63590s