pypinn


Namepypinn JSON
Version 1.0.1 PyPI version JSON
download
home_page
Summarypinn implementation using torch.
upload_time2023-12-25 12:29:19
maintainer
docs_urlNone
authorDongpeng Han
requires_python
licenseMIT
keywords python pinn pypinn windows mac linux
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
## 1 Introduction

Physical Information Neural Network implemented using pytorch, Mainly to facilitate the solution of ordinary differential equations.



## 2 External dependencies for pypinn

torch, numpy, and tqdm.



## 3 Usage



### 3.1 step 1 

Define a class that inherits from `pypinn.Pinn`, such as `Net`. Write the equation to be solved in the `get_f` function of `Net`. Here is an example:

```python

import pypinn

import torch

import torch.nn as nn



class Net(pypinn.Pinn):

    def __init__(self, input_size: int, hidden_sizes: list, output_size: int, seed=0):

        super().__init__(input_size, hidden_sizes, output_size, seed)



    def get_f(self,x):

        y, dy = self.get_y_and_dy(x)

        f1 = dy[0]-y[1]

        f2 = dy[1]-(-y[1]-(2+torch.sin(x))*y[0])

        f3 = self.forward(torch.tensor([[0.0]])) - torch.tensor([[0,1]])

        return f1,f2,f3

```

The above example is used to solve a system of equations:

$$

\begin{cases}

    \frac{\mathrm{d}y_1}{\mathrm{d}x} = y_2,\\

    \frac{\mathrm{d}y_2}{\mathrm{d}x} = -y_2-(2+\sin x)y_1,\\

    y_1(0)=0,y_2(0)=1.

\end{cases}

$$



Tips: ` dy[0], dy[1] ` represent $\frac{dy_1}{dx}, \frac{dy_2}{dx}$, ` y[0], y[1]` represent $y_1, y_2$. The number of equations can theoretically be arbitrarily large.



### 3.2 step 2

Instantiate the class we defined, for example, set the number of input neurons to 1, the hidden layer to 20*20, and the number of output neurons to 2: `mdl = Net(1,[20,20],2)`.



### 3.3 step 3

Configure the training data, loss function, optimizer, learning rate, number of iterations, and then use `mdl.train(**settings)` to train.

```python

settings={

    'x': torch.linspace(0,6,301,requires_grad=True).view(-1,1),

    'loss_fn': nn.MSELoss(),

    'optimizer': torch.optim.Adam,

    'lr': 1e-3,

    'epochs': 5000

}

mdl.train(**settings)

```



### 3.4 step 4

After the model is trained, it can be visualized. Here is a simple example:

```python

import matplotlib.pyplot as plt

t = torch.linspace(0,6,500).view(-1,1)

plt.plot(t,mdl.predict(t))

plt.show()

```







## Update log

`1.0.1` More detailed instructions have been added

`1.0.0` first updata


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pypinn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,pinn,pypinn,windows,mac,linux",
    "author": "Dongpeng Han",
    "author_email": "3223003076@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/71/7e/a504fc282a2b786a3e21b289b38e12db2648c9aa100a98f243d2bb4ed7ff/pypinn-1.0.1.tar.gz",
    "platform": null,
    "description": "\r\n## 1 Introduction\r\r\nPhysical Information Neural Network implemented using pytorch, Mainly to facilitate the solution of ordinary differential equations.\r\r\n\r\r\n## 2 External dependencies for pypinn\r\r\ntorch, numpy, and tqdm.\r\r\n\r\r\n## 3 Usage\r\r\n\r\r\n### 3.1 step 1 \r\r\nDefine a class that inherits from `pypinn.Pinn`, such as `Net`. Write the equation to be solved in the `get_f` function of `Net`. Here is an example:\r\r\n```python\r\r\nimport pypinn\r\r\nimport torch\r\r\nimport torch.nn as nn\r\r\n\r\r\nclass Net(pypinn.Pinn):\r\r\n    def __init__(self, input_size: int, hidden_sizes: list, output_size: int, seed=0):\r\r\n        super().__init__(input_size, hidden_sizes, output_size, seed)\r\r\n\r\r\n    def get_f(self,x):\r\r\n        y, dy = self.get_y_and_dy(x)\r\r\n        f1 = dy[0]-y[1]\r\r\n        f2 = dy[1]-(-y[1]-(2+torch.sin(x))*y[0])\r\r\n        f3 = self.forward(torch.tensor([[0.0]])) - torch.tensor([[0,1]])\r\r\n        return f1,f2,f3\r\r\n```\r\r\nThe above example is used to solve a system of equations:\r\r\n$$\r\r\n\\begin{cases}\r\r\n    \\frac{\\mathrm{d}y_1}{\\mathrm{d}x} = y_2,\\\\\r\r\n    \\frac{\\mathrm{d}y_2}{\\mathrm{d}x} = -y_2-(2+\\sin x)y_1,\\\\\r\r\n    y_1(0)=0,y_2(0)=1.\r\r\n\\end{cases}\r\r\n$$\r\r\n\r\r\nTips: ` dy[0], dy[1] ` represent $\\frac{dy_1}{dx}, \\frac{dy_2}{dx}$, ` y[0], y[1]` represent $y_1, y_2$. The number of equations can theoretically be arbitrarily large.\r\r\n\r\r\n### 3.2 step 2\r\r\nInstantiate the class we defined, for example, set the number of input neurons to 1, the hidden layer to 20*20, and the number of output neurons to 2: `mdl = Net(1,[20,20],2)`.\r\r\n\r\r\n### 3.3 step 3\r\r\nConfigure the training data, loss function, optimizer, learning rate, number of iterations, and then use `mdl.train(**settings)` to train.\r\r\n```python\r\r\nsettings={\r\r\n    'x': torch.linspace(0,6,301,requires_grad=True).view(-1,1),\r\r\n    'loss_fn': nn.MSELoss(),\r\r\n    'optimizer': torch.optim.Adam,\r\r\n    'lr': 1e-3,\r\r\n    'epochs': 5000\r\r\n}\r\r\nmdl.train(**settings)\r\r\n```\r\r\n\r\r\n### 3.4 step 4\r\r\nAfter the model is trained, it can be visualized. Here is a simple example:\r\r\n```python\r\r\nimport matplotlib.pyplot as plt\r\r\nt = torch.linspace(0,6,500).view(-1,1)\r\r\nplt.plot(t,mdl.predict(t))\r\r\nplt.show()\r\r\n```\r\r\n\r\r\n\r\r\n\r\r\n## Update log\r\r\n`1.0.1` More detailed instructions have been added\r\r\n`1.0.0` first updata\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "pinn implementation using torch.",
    "version": "1.0.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "pinn",
        "pypinn",
        "windows",
        "mac",
        "linux"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "717ea504fc282a2b786a3e21b289b38e12db2648c9aa100a98f243d2bb4ed7ff",
                "md5": "8786583a02dd37bff85842783571aba0",
                "sha256": "f698a10769f3935799701469109af28304f98a56f0fc006c96cc705fa8bcefaa"
            },
            "downloads": -1,
            "filename": "pypinn-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8786583a02dd37bff85842783571aba0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5996,
            "upload_time": "2023-12-25T12:29:19",
            "upload_time_iso_8601": "2023-12-25T12:29:19.191795Z",
            "url": "https://files.pythonhosted.org/packages/71/7e/a504fc282a2b786a3e21b289b38e12db2648c9aa100a98f243d2bb4ed7ff/pypinn-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-25 12:29:19",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pypinn"
}
        
Elapsed time: 0.17505s