pypme


Namepypme JSON
Version 0.6.1 PyPI version JSON
download
home_pagehttps://github.com/ymyke/pypme
SummaryPython package for PME (Public Market Equivalent) calculation
upload_time2023-06-27 12:59:06
maintainer
docs_urlNone
authorymyke
requires_python>=3.9
licenseMIT
keywords python finance investing financial-analysis pme investment-analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pypme – Python package for PME (Public Market Equivalent) calculation

Based on the [Modified PME
method](https://en.wikipedia.org/wiki/Public_Market_Equivalent#Modified_PME).

## Example

```python
from pypme import verbose_xpme
from datetime import date

pmeirr, assetirr, df = verbose_xpme(
    dates=[date(2015, 1, 1), date(2015, 6, 12), date(2016, 2, 15)],
    cashflows=[-10000, 7500],
    prices=[100, 120, 100],
    pme_prices=[100, 150, 100],
)
```

Will return `0.5525698793027238` and  `0.19495150355969598` for the IRRs and produce this
dataframe:

![Example dataframe](https://raw.githubusercontent.com/ymyke/pypme/main/images/example_df.png)

Notes:
- The `cashflows` are interpreted from a transaction account that is used to buy from an
  asset at price `prices`.
- The corresponding prices for the PME are `pme_prices`.
- The `cashflows` is extended with one element representing the remaining value, that's
  why all the other lists (`dates`, `prices`, `pme_prices`) need to be exactly 1 element
  longer than `cashflows`.

## Variants

- `xpme`: Calculate PME for unevenly spaced / scheduled cashflows and return the PME IRR
  only. In this case, the IRR is always annual.
- `verbose_xpme`: Calculate PME for unevenly spaced / scheduled cashflows and return
  vebose information.
- `pme`: Calculate PME for evenly spaced cashflows and return the PME IRR only. In this
  case, the IRR is for the underlying period.
- `verbose_pme`: Calculate PME for evenly spaced cashflows and return vebose
  information.
- `tessa_xpme` and `tessa_verbose_xpme`: Use live price information via the tessa
  library. See below.

## tessa examples – using tessa to retrieve PME prices online

Use `tessa_xpme` and `tessa_verbose_xpme` to get live prices via the [tessa
library](https://github.com/ymyke/tessa) and use those prices as the PME. Like so:

```python
from datetime import datetime, timezone
from pypme import tessa_xpme

common_args = {
    "dates": [
        datetime(2012, 1, 1, tzinfo=timezone.utc), 
        datetime(2013, 1, 1, tzinfo=timezone.utc)
    ],
    "cashflows": [-100],
    "prices": [1, 1],
}
print(tessa_xpme(pme_ticker="LIT", **common_args))  # source will default to "yahoo"
print(tessa_xpme(pme_ticker="bitcoin", pme_source="coingecko", **common_args))
print(tessa_xpme(pme_ticker="SREN.SW", pme_source="yahoo", **common_args))
```

Note that the dates need to be timezone-aware for these functions.


## Garbage in, garbage out

Note that the package will only perform essential sanity checks and otherwise just works
with what it gets, also with nonsensical data. E.g.:

```python
from pypme import verbose_pme

pmeirr, assetirr, df = verbose_pme(
    cashflows=[-10, 500], prices=[1, 1, 1], pme_prices=[1, 1, 1]
)
```

Results in this df and IRRs of 0:

![Garbage example df](https://raw.githubusercontent.com/ymyke/pypme/main/images/garbage_example_df.png)


## Other noteworthy libraries

- [tessa](https://github.com/ymyke/tessa): Find financial assets and get their price history without worrying about different APIs or rate limiting.
- [strela](https://github.com/ymyke/strela): A python package for financial alerts.


## References

- [Google Sheet w/ reference calculation](https://docs.google.com/spreadsheets/d/1LMSBU19oWx8jw1nGoChfimY5asUA4q6Vzh7jRZ_7_HE/edit#gid=0)
- [Modified PME on Wikipedia](https://en.wikipedia.org/wiki/Public_Market_Equivalent#Modified_PME)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ymyke/pypme",
    "name": "pypme",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "python,finance,investing,financial-analysis,pme,investment-analysis",
    "author": "ymyke",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/68/2d/0b0cbf757fb243b80ad124d70fce8888f90eaeb4da0235e70ffa26733970/pypme-0.6.1.tar.gz",
    "platform": null,
    "description": "# pypme \u2013 Python package for PME (Public Market Equivalent) calculation\n\nBased on the [Modified PME\nmethod](https://en.wikipedia.org/wiki/Public_Market_Equivalent#Modified_PME).\n\n## Example\n\n```python\nfrom pypme import verbose_xpme\nfrom datetime import date\n\npmeirr, assetirr, df = verbose_xpme(\n    dates=[date(2015, 1, 1), date(2015, 6, 12), date(2016, 2, 15)],\n    cashflows=[-10000, 7500],\n    prices=[100, 120, 100],\n    pme_prices=[100, 150, 100],\n)\n```\n\nWill return `0.5525698793027238` and  `0.19495150355969598` for the IRRs and produce this\ndataframe:\n\n![Example dataframe](https://raw.githubusercontent.com/ymyke/pypme/main/images/example_df.png)\n\nNotes:\n- The `cashflows` are interpreted from a transaction account that is used to buy from an\n  asset at price `prices`.\n- The corresponding prices for the PME are `pme_prices`.\n- The `cashflows` is extended with one element representing the remaining value, that's\n  why all the other lists (`dates`, `prices`, `pme_prices`) need to be exactly 1 element\n  longer than `cashflows`.\n\n## Variants\n\n- `xpme`: Calculate PME for unevenly spaced / scheduled cashflows and return the PME IRR\n  only. In this case, the IRR is always annual.\n- `verbose_xpme`: Calculate PME for unevenly spaced / scheduled cashflows and return\n  vebose information.\n- `pme`: Calculate PME for evenly spaced cashflows and return the PME IRR only. In this\n  case, the IRR is for the underlying period.\n- `verbose_pme`: Calculate PME for evenly spaced cashflows and return vebose\n  information.\n- `tessa_xpme` and `tessa_verbose_xpme`: Use live price information via the tessa\n  library. See below.\n\n## tessa examples \u2013 using tessa to retrieve PME prices online\n\nUse `tessa_xpme` and `tessa_verbose_xpme` to get live prices via the [tessa\nlibrary](https://github.com/ymyke/tessa) and use those prices as the PME. Like so:\n\n```python\nfrom datetime import datetime, timezone\nfrom pypme import tessa_xpme\n\ncommon_args = {\n    \"dates\": [\n        datetime(2012, 1, 1, tzinfo=timezone.utc), \n        datetime(2013, 1, 1, tzinfo=timezone.utc)\n    ],\n    \"cashflows\": [-100],\n    \"prices\": [1, 1],\n}\nprint(tessa_xpme(pme_ticker=\"LIT\", **common_args))  # source will default to \"yahoo\"\nprint(tessa_xpme(pme_ticker=\"bitcoin\", pme_source=\"coingecko\", **common_args))\nprint(tessa_xpme(pme_ticker=\"SREN.SW\", pme_source=\"yahoo\", **common_args))\n```\n\nNote that the dates need to be timezone-aware for these functions.\n\n\n## Garbage in, garbage out\n\nNote that the package will only perform essential sanity checks and otherwise just works\nwith what it gets, also with nonsensical data. E.g.:\n\n```python\nfrom pypme import verbose_pme\n\npmeirr, assetirr, df = verbose_pme(\n    cashflows=[-10, 500], prices=[1, 1, 1], pme_prices=[1, 1, 1]\n)\n```\n\nResults in this df and IRRs of 0:\n\n![Garbage example df](https://raw.githubusercontent.com/ymyke/pypme/main/images/garbage_example_df.png)\n\n\n## Other noteworthy libraries\n\n- [tessa](https://github.com/ymyke/tessa): Find financial assets and get their price history without worrying about different APIs or rate limiting.\n- [strela](https://github.com/ymyke/strela): A python package for financial alerts.\n\n\n## References\n\n- [Google Sheet w/ reference calculation](https://docs.google.com/spreadsheets/d/1LMSBU19oWx8jw1nGoChfimY5asUA4q6Vzh7jRZ_7_HE/edit#gid=0)\n- [Modified PME on Wikipedia](https://en.wikipedia.org/wiki/Public_Market_Equivalent#Modified_PME)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python package for PME (Public Market Equivalent) calculation",
    "version": "0.6.1",
    "project_urls": {
        "Homepage": "https://github.com/ymyke/pypme",
        "Repository": "https://github.com/ymyke/pypme"
    },
    "split_keywords": [
        "python",
        "finance",
        "investing",
        "financial-analysis",
        "pme",
        "investment-analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "23031a10a6aea37ed4d4fc3bdbf31b4ab5cde124a7ae26f98f85daeaac55fa91",
                "md5": "63ee1f7ffa470cad46a298dd4795c28b",
                "sha256": "729bb0741852140ed9f2b71e76cd2b5c553496eaf636fe83cc5539a6f2b1d365"
            },
            "downloads": -1,
            "filename": "pypme-0.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "63ee1f7ffa470cad46a298dd4795c28b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 6021,
            "upload_time": "2023-06-27T12:59:04",
            "upload_time_iso_8601": "2023-06-27T12:59:04.604836Z",
            "url": "https://files.pythonhosted.org/packages/23/03/1a10a6aea37ed4d4fc3bdbf31b4ab5cde124a7ae26f98f85daeaac55fa91/pypme-0.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "682d0b0cbf757fb243b80ad124d70fce8888f90eaeb4da0235e70ffa26733970",
                "md5": "7e71d260d4727645b6d29e502fc5aee8",
                "sha256": "3cf46a82f9f08258179901445c45911ef8146fbf01b8a2c7b1f4be577d2786d2"
            },
            "downloads": -1,
            "filename": "pypme-0.6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7e71d260d4727645b6d29e502fc5aee8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 5861,
            "upload_time": "2023-06-27T12:59:06",
            "upload_time_iso_8601": "2023-06-27T12:59:06.223459Z",
            "url": "https://files.pythonhosted.org/packages/68/2d/0b0cbf757fb243b80ad124d70fce8888f90eaeb4da0235e70ffa26733970/pypme-0.6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-27 12:59:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ymyke",
    "github_project": "pypme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pypme"
}
        
Elapsed time: 0.09353s