# pypromice
[![PyPI version](https://badge.fury.io/py/pypromice.svg)](https://badge.fury.io/py/pypromice) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pypromice/badges/version.svg)](https://anaconda.org/conda-forge/pypromice) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pypromice/badges/platforms.svg)](https://anaconda.org/conda-forge/pypromice) [![](<https://img.shields.io/badge/Dataverse DOI-10.22008/FK2/3TSBF0-orange>)](https://www.doi.org/10.22008/FK2/3TSBF0) [![DOI](https://joss.theoj.org/papers/10.21105/joss.05298/status.svg)](https://doi.org/10.21105/joss.05298) [![Documentation Status](https://readthedocs.org/projects/pypromice/badge/?version=latest)](https://pypromice.readthedocs.io/en/latest/?badge=latest)
pypromice is designed for processing and handling [PROMICE](https://promice.org) automated weather station (AWS) data.
It is envisioned for pypromice to be the go-to toolbox for handling and processing [PROMICE](https://promice.dk) and [GC-Net](http://cires1.colorado.edu/steffen/gcnet/) datasets. New releases of pypromice are uploaded alongside PROMICE AWS data releases to our [Dataverse](https://dataverse.geus.dk/dataverse/PROMICE) for transparency purposes and to encourage collaboration on improving our data. Please visit the pypromice [readthedocs](https://pypromice.readthedocs.io/en/latest/?badge=latest) for more information.
If you intend to use PROMICE AWS data and/or pypromice in your work, please cite these publications below, along with any other applicable PROMICE publications where possible:
**Fausto, R.S., van As, D., Mankoff, K.D., Vandecrux, B., Citterio, M., Ahlstrøm, A.P., Andersen, S.B., Colgan, W., Karlsson, N.B., Kjeldsen, K.K., Korsgaard, N.J., Larsen, S.H., Nielsen, S., Pedersen, A.Ø., Shields, C.L., Solgaard, A.M., and Box, J.E. (2021) Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, [https://doi.org/10.5194/essd-13-3819-2021](https://doi.org/10.5194/essd-13-3819-2021)**
**How, P., Wright, P.J., Mankoff, K., Vandecrux, B., Fausto, R.S. and Ahlstrøm, A.P. (2023) pypromice: A Python package for processing automated weather station data, Journal of Open Source Software, 8(86), 5298, [https://doi.org/10.21105/joss.05298](https://doi.org/10.21105/joss.05298)**
**How, P., Lund, M.C., Nielsen, R.B., Ahlstrøm, A.P., Fausto, R.S., Larsen, S.H., Mankoff, K.D., Vandecrux, B., Wright, P.J. (2023) pypromice, GEUS Dataverse, [https://doi.org/10.22008/FK2/3TSBF0](https://doi.org/10.22008/FK2/3TSBF0)**
## Installation
### Quick install
The latest release of pypromice can installed using conda or pip:
```
$ conda install pypromice -c conda-forge
```
```
$ pip install pypromice
```
The [eccodes](https://confluence.ecmwf.int/display/ECC/ecCodes+installation) package for pypromice's post-processing functionality needs to be installed specifically in the pip distribution:
```
$ conda install eccodes -c conda-forge
$ pip install pypromice
```
And for the most up-to-date version of pypromice, the package can be cloned and installed directly from the repo:
```
$ pip install --upgrade git+http://github.com/GEUS-Glaciology-and-Climate/pypromice.git
```
### Developer install
pypromice can be ran in an environment with the pypromice repo:
```
$ conda create --name pypromice python=3.8
$ conda activate pypromice
$ git clone git@github.com:GEUS-Glaciology-and-Climate/pypromice.git
$ cd pypromice/
$ pip install .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/GEUS-Glaciology-and-Climate/pypromice",
"name": "pypromice",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "promice gc-net aws climate glaciology greenland geus",
"author": "GEUS Glaciology and Climate",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/9f/9d/79479660e4d11b203d15969bf8201aeb0e1820b0f583b70e4fb8927cf924/pypromice-1.4.4.tar.gz",
"platform": null,
"description": "# pypromice\n[![PyPI version](https://badge.fury.io/py/pypromice.svg)](https://badge.fury.io/py/pypromice) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pypromice/badges/version.svg)](https://anaconda.org/conda-forge/pypromice) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pypromice/badges/platforms.svg)](https://anaconda.org/conda-forge/pypromice) [![](<https://img.shields.io/badge/Dataverse DOI-10.22008/FK2/3TSBF0-orange>)](https://www.doi.org/10.22008/FK2/3TSBF0) [![DOI](https://joss.theoj.org/papers/10.21105/joss.05298/status.svg)](https://doi.org/10.21105/joss.05298) [![Documentation Status](https://readthedocs.org/projects/pypromice/badge/?version=latest)](https://pypromice.readthedocs.io/en/latest/?badge=latest)\n \npypromice is designed for processing and handling [PROMICE](https://promice.org) automated weather station (AWS) data.\n\nIt is envisioned for pypromice to be the go-to toolbox for handling and processing [PROMICE](https://promice.dk) and [GC-Net](http://cires1.colorado.edu/steffen/gcnet/) datasets. New releases of pypromice are uploaded alongside PROMICE AWS data releases to our [Dataverse](https://dataverse.geus.dk/dataverse/PROMICE) for transparency purposes and to encourage collaboration on improving our data. Please visit the pypromice [readthedocs](https://pypromice.readthedocs.io/en/latest/?badge=latest) for more information. \n\nIf you intend to use PROMICE AWS data and/or pypromice in your work, please cite these publications below, along with any other applicable PROMICE publications where possible:\n\n**Fausto, R.S., van As, D., Mankoff, K.D., Vandecrux, B., Citterio, M., Ahlstr\u00f8m, A.P., Andersen, S.B., Colgan, W., Karlsson, N.B., Kjeldsen, K.K., Korsgaard, N.J., Larsen, S.H., Nielsen, S., Pedersen, A.\u00d8., Shields, C.L., Solgaard, A.M., and Box, J.E. (2021) Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819\u20133845, [https://doi.org/10.5194/essd-13-3819-2021](https://doi.org/10.5194/essd-13-3819-2021)**\n\n**How, P., Wright, P.J., Mankoff, K., Vandecrux, B., Fausto, R.S. and Ahlstr\u00f8m, A.P. (2023) pypromice: A Python package for processing automated weather station data, Journal of Open Source Software, 8(86), 5298, [https://doi.org/10.21105/joss.05298](https://doi.org/10.21105/joss.05298)** \n\n**How, P., Lund, M.C., Nielsen, R.B., Ahlstr\u00f8m, A.P., Fausto, R.S., Larsen, S.H., Mankoff, K.D., Vandecrux, B., Wright, P.J. (2023) pypromice, GEUS Dataverse, [https://doi.org/10.22008/FK2/3TSBF0](https://doi.org/10.22008/FK2/3TSBF0)** \n\n## Installation\n\n### Quick install\n\nThe latest release of pypromice can installed using conda or pip:\n\n```\n$ conda install pypromice -c conda-forge\n```\n\n```\n$ pip install pypromice\n```\n\nThe [eccodes](https://confluence.ecmwf.int/display/ECC/ecCodes+installation) package for pypromice's post-processing functionality needs to be installed specifically in the pip distribution:\n\n```\n$ conda install eccodes -c conda-forge\n$ pip install pypromice\n```\n\nAnd for the most up-to-date version of pypromice, the package can be cloned and installed directly from the repo: \n\n```\n$ pip install --upgrade git+http://github.com/GEUS-Glaciology-and-Climate/pypromice.git\n```\n\n### Developer install\n\t\npypromice can be ran in an environment with the pypromice repo:\n\n```\n$ conda create --name pypromice python=3.8\n$ conda activate pypromice\n$ git clone git@github.com:GEUS-Glaciology-and-Climate/pypromice.git\n$ cd pypromice/\n$ pip install .\n```\n\n",
"bugtrack_url": null,
"license": null,
"summary": "PROMICE/GC-Net data processing toolbox",
"version": "1.4.4",
"project_urls": {
"Bug Tracker": "https://github.com/GEUS-Glaciology-and-Climate/pypromice/issues",
"Documentation": "https://pypromice.readthedocs.io",
"Homepage": "https://github.com/GEUS-Glaciology-and-Climate/pypromice",
"Source Code": "https://github.com/GEUS-Glaciology-and-Climate/pypromice"
},
"split_keywords": [
"promice",
"gc-net",
"aws",
"climate",
"glaciology",
"greenland",
"geus"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6da2d139bcc1257ca7cc6db8049ebf0a7136aa0ed41787794741cdfb7b58c195",
"md5": "67e22f1525d83cfb4608ceea74d0bbb1",
"sha256": "3210bb5cc898d5e4fe29943e88f6b572f5956b550dd7e47fe77eaf969bc85e84"
},
"downloads": -1,
"filename": "pypromice-1.4.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "67e22f1525d83cfb4608ceea74d0bbb1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 124906,
"upload_time": "2024-10-15T12:10:03",
"upload_time_iso_8601": "2024-10-15T12:10:03.435886Z",
"url": "https://files.pythonhosted.org/packages/6d/a2/d139bcc1257ca7cc6db8049ebf0a7136aa0ed41787794741cdfb7b58c195/pypromice-1.4.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9f9d79479660e4d11b203d15969bf8201aeb0e1820b0f583b70e4fb8927cf924",
"md5": "b3947a10f21ee03ad9f22ba831c81496",
"sha256": "cda83bc6c00d1e288133847dd19ce8c24d2e4b6d4a0e5bc31994a4b67a239683"
},
"downloads": -1,
"filename": "pypromice-1.4.4.tar.gz",
"has_sig": false,
"md5_digest": "b3947a10f21ee03ad9f22ba831c81496",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 109423,
"upload_time": "2024-10-15T12:10:05",
"upload_time_iso_8601": "2024-10-15T12:10:05.351193Z",
"url": "https://files.pythonhosted.org/packages/9f/9d/79479660e4d11b203d15969bf8201aeb0e1820b0f583b70e4fb8927cf924/pypromice-1.4.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-15 12:10:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "GEUS-Glaciology-and-Climate",
"github_project": "pypromice",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pypromice"
}