# pyqlaw
Q-law feedback control for low-thrust orbital transfer in Python
| PyPI | Documentation | Test | Coverage |
| -------- | ------------- | ------------- | -------- |
| [![PyPI version](https://badge.fury.io/py/pyqlaw.svg)](https://badge.fury.io/py/pyqlaw) | [![documentation workflow](https://github.com/Yuricst/pyqlaw/actions/workflows/documentation.yml/badge.svg)](https://yuricst.github.io/pyqlaw/) | ![pytest workflow](https://github.com/Yuricst/pyqlaw/actions/workflows/pytest.yml/badge.svg) | [![Coverage Status](./pyqlaw/coverage-badge.svg?dummy=8484744)](./htmlcov/index.html) |
## Capabilities:
- Q-law formulated in Keplerian & SMA-MEE (MEE with semilatus rectum replaced by semimajor axis)
- Coasting capabilities with efficiency parameters [3]
- Thrust duty cycles
- Battery level tracking
## Installation
To install, run
```
pip install pyqlaw
```
and to uninstall
```
pip uninstall pyqlaw
```
The package depends on the following basic python modules:
- `sympy`, `numpy`, `tqdm`, `matplotilb`, `numba`, `scipy`, `spiceypy`
## Overview of Q-law
Q-law is very sensitive to the problem (initial & final orbital elements, choice of orbital elements, thruster specs = control authority) as well as its various hyperparamters, which must be chosen carefully.
In general, the following should be kept in mind:
- For numerical stability, always work with canonical scales.
- Be very careful with initial/final orbits not to contain singular elements (e.g. inclination ~ 0 deg in Keplerian elements representation).
- Q-law is not suitable for high control authority applications (e.g. interplanetary transfer with 0~very few revolutions).
- Taking larger integration time steps `t_step` (or angle steps, if `use_sundman = True`) makes the algorithm ``faster'' (less time until reaching the targeted elements), but may also lead to instability/high jitter once the spacecraft is close to the target; an appropriate value must be found on a problem-to-problem basis.
For more discussions, see for example:
- Petropoulos, A. E. (2004). Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting. Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference, 2(August), 748–762. https://doi.org/10.2514/6.2004-5089
- Petropoulos, A. E. (2005). Refinements to the Q-law for low-thrust orbit transfers. AAS/AIAA Space Flight Mechanics Meeting.
- Hatten, N. (2012). A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws.
### Basic usage
Test files are included in `./tests/`. Here, we present a basic example. Before starting, please note a couple of things:
- Dynamics & spacecraft parameters are given in non-dimensional quantities, scaling `GM = 1.0` (which may be modified, but it is numerically desirable to use this scaling).
- All angles are defined in radians.
- Due to instability of Gauss's equation and the Lyapunov feedback control law, some of the elements should not be smaller in magnitude than a certain safe-guarding threshold value. This is why some of the starting elements in the following example are not set to 0, but a mild value (e.g. `1e-2`, `1e-3`).
We start by importing the module
```python
import pyqlaw
```
Construct initial and final Keplrian elements to target, along with weighting
```python
# initial and final elements (always in order: [SMA, ECC, INC, RAAN, AOP, TA])
oe0 = np.array([1.0, 1e-2, 1e-2, 1e-3, 1e-3, 1e-3])
oeT = np.array([1.1, 5e-3, 0.2, 0.0, 0.0])
woe = [1.0, 1.0, 1.0, 1.0, 0.0]
```
Provide spacecraft parameters (max thrust and mass-flow rate), max transfer time, and time-step (note that integration is done using fixed-steps):
```python
# spacecraft parameters
mass0 = 1.0
tmax = 1e-3
mdot = 1e-4
tf_max = 300.0
t_step = 0.1
```
Construct the problem object, then set the problem parameters
```python
prob = pyqlaw.QLaw()
prob.set_problem(oe0, oeT, mass0, tmax, mdot, tf_max, t_step, woe=woe)
prob.pretty() # print info
```
```
Transfer:
sma : 1.0000e+00 -> 1.1000e+00 (weight: 1.00)
ecc : 1.0000e-02 -> 5.0000e-03 (weight: 1.00)
inc : 1.0000e-02 -> 2.0000e-01 (weight: 1.00)
raan : 1.0000e-03 -> 0.0000e+00 (weight: 1.00)
aop : 1.0000e-03 -> 0.0000e+00 (weight: 0.00)
```
solve the problem
```python
prob.solve()
prob.pretty_results() # print info
```
```
qlaw: 99%|█████████████████████████████████████████████████████████████████▏| 2970/3000 [03:03<00:01, 16.20it/s]
Target elements successfully reached!
Final state:
sma : 1.1000e+00 (error: 1.8297e-05)
ecc : 5.0141e-03 (error: 1.4138e-05)
inc : 1.9994e-01 (error: 5.7253e-05)
raan : 4.5828e-04 (error: 4.5828e-04)
aop : 1.2206e-01 (error: 1.2206e-01)
```
Some conveninence methods for plotting:
```python
fig1, ax1 = prob.plot_elements_history()
fig2, ax2 = prob.plot_trajectory_3d()
```
<p align="center">
<img src="./plots//transfer_eg_3dtraj.png" width="400" title="transfer">
</p>
## Reporting issues
If you found a bug in `pyqlaw`, please report it by creating a new issue on [the repository](https://github.com/Yuricst/pyqlaw/).
Please make sure to include an example the demonstrates the issue.
## Contributing
If you have an idea for improving the module, please submid an issue with your proposal for enahncement.
## References
[1] Petropoulos, A. E. (2003). Simple Control Laws for Low-Thrust Orbit Transfers. AAS Astrodynamics Specialists Conference.
[2] Petropoulos, A. E. (2004). Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting. AIAA/AAS Astrodynamics Specialist Conference, August. https://doi.org/10.2514/6.2004-5089
[3] Petropoulos, A. E. (2005). Refinements to the Q-law for low-thrust orbit transfers. Advances in the Astronautical Sciences, 120(I), 963–982.
[4] Shannon, J. L., Ozimek, M. T., Atchison, J. A., & Hartzell, C. M. (2020). Q-law aided direct trajectory optimization of many-revolution low-thrust transfers. Journal of Spacecraft and Rockets, 57(4), 672–682. https://doi.org/10.2514/1.A34586
[5] Leomanni, M., Bianchini, G., Garulli, A., Quartullo, R., & Scortecci, F. (2021). Optimal Low-Thrust Orbit Transfers Made Easy: A Direct Approach. Journal of Spacecraft and Rockets, 1–11. https://doi.org/10.2514/1.a34949
[6] [Modified Equinoctial Elements (careful with typos in this document!)](https://spsweb.fltops.jpl.nasa.gov/portaldataops/mpg/MPG_Docs/Source%20Docs/EquinoctalElements-modified.pdf)
[7] Hatten, N. (2012). A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws.
Raw data
{
"_id": null,
"home_page": "https://github.com/Yuricst/pyqlaw",
"name": "pyqlaw",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "astrodynamics",
"author": "Yuri Shimane",
"author_email": "yuri.shimane@gatech.edu",
"download_url": "https://files.pythonhosted.org/packages/c8/43/dd8d39c52c0741e310a05ab00234f8006a956c4a62f2aeddb50d49fe7d00/pyqlaw-0.2.0.tar.gz",
"platform": null,
"description": "# pyqlaw\nQ-law feedback control for low-thrust orbital transfer in Python\n\n| PyPI | Documentation | Test | Coverage |\n| -------- | ------------- | ------------- | -------- |\n| [![PyPI version](https://badge.fury.io/py/pyqlaw.svg)](https://badge.fury.io/py/pyqlaw) | [![documentation workflow](https://github.com/Yuricst/pyqlaw/actions/workflows/documentation.yml/badge.svg)](https://yuricst.github.io/pyqlaw/) | ![pytest workflow](https://github.com/Yuricst/pyqlaw/actions/workflows/pytest.yml/badge.svg) | [![Coverage Status](./pyqlaw/coverage-badge.svg?dummy=8484744)](./htmlcov/index.html) |\n\n\n## Capabilities:\n\n- Q-law formulated in Keplerian & SMA-MEE (MEE with semilatus rectum replaced by semimajor axis)\n- Coasting capabilities with efficiency parameters [3]\n- Thrust duty cycles\n- Battery level tracking\n\n## Installation\n\nTo install, run \n\n```\npip install pyqlaw\n```\n\nand to uninstall\n\n```\npip uninstall pyqlaw\n```\n\nThe package depends on the following basic python modules:\n\n- `sympy`, `numpy`, `tqdm`, `matplotilb`, `numba`, `scipy`, `spiceypy`\n\n\n## Overview of Q-law\n\nQ-law is very sensitive to the problem (initial & final orbital elements, choice of orbital elements, thruster specs = control authority) as well as its various hyperparamters, which must be chosen carefully. \nIn general, the following should be kept in mind:\n\n- For numerical stability, always work with canonical scales.\n- Be very careful with initial/final orbits not to contain singular elements (e.g. inclination ~ 0 deg in Keplerian elements representation).\n- Q-law is not suitable for high control authority applications (e.g. interplanetary transfer with 0~very few revolutions).\n- Taking larger integration time steps `t_step` (or angle steps, if `use_sundman = True`) makes the algorithm ``faster'' (less time until reaching the targeted elements), but may also lead to instability/high jitter once the spacecraft is close to the target; an appropriate value must be found on a problem-to-problem basis.\n\n\nFor more discussions, see for example: \n\n- Petropoulos, A. E. (2004). Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting. Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference, 2(August), 748\u2013762. https://doi.org/10.2514/6.2004-5089\n- Petropoulos, A. E. (2005). Refinements to the Q-law for low-thrust orbit transfers. AAS/AIAA Space Flight Mechanics Meeting.\n- Hatten, N. (2012). A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws.\n\n\n### Basic usage\n\nTest files are included in `./tests/`. Here, we present a basic example. Before starting, please note a couple of things:\n\n- Dynamics & spacecraft parameters are given in non-dimensional quantities, scaling `GM = 1.0` (which may be modified, but it is numerically desirable to use this scaling). \n- All angles are defined in radians.\n- Due to instability of Gauss's equation and the Lyapunov feedback control law, some of the elements should not be smaller in magnitude than a certain safe-guarding threshold value. This is why some of the starting elements in the following example are not set to 0, but a mild value (e.g. `1e-2`, `1e-3`). \n\nWe start by importing the module\n\n```python\nimport pyqlaw\n```\n\nConstruct initial and final Keplrian elements to target, along with weighting\n\n```python\n# initial and final elements (always in order: [SMA, ECC, INC, RAAN, AOP, TA])\noe0 = np.array([1.0, 1e-2, 1e-2, 1e-3, 1e-3, 1e-3])\noeT = np.array([1.1, 5e-3, 0.2, 0.0, 0.0])\nwoe = [1.0, 1.0, 1.0, 1.0, 0.0]\n```\n\nProvide spacecraft parameters (max thrust and mass-flow rate), max transfer time, and time-step (note that integration is done using fixed-steps):\n\n```python\n# spacecraft parameters\nmass0 = 1.0\ntmax = 1e-3\nmdot = 1e-4\ntf_max = 300.0\nt_step = 0.1\n```\n\nConstruct the problem object, then set the problem parameters\n\n```python\nprob = pyqlaw.QLaw()\nprob.set_problem(oe0, oeT, mass0, tmax, mdot, tf_max, t_step, woe=woe)\nprob.pretty() # print info\n```\n\n```\nTransfer:\n sma : 1.0000e+00 -> 1.1000e+00 (weight: 1.00)\n ecc : 1.0000e-02 -> 5.0000e-03 (weight: 1.00)\n inc : 1.0000e-02 -> 2.0000e-01 (weight: 1.00)\n raan : 1.0000e-03 -> 0.0000e+00 (weight: 1.00)\n aop : 1.0000e-03 -> 0.0000e+00 (weight: 0.00)\n```\n\nsolve the problem\n\n```python\nprob.solve()\nprob.pretty_results() # print info\n```\n\n```\nqlaw: 99%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u258f| 2970/3000 [03:03<00:01, 16.20it/s]\nTarget elements successfully reached!\nFinal state:\n sma : 1.1000e+00 (error: 1.8297e-05)\n ecc : 5.0141e-03 (error: 1.4138e-05)\n inc : 1.9994e-01 (error: 5.7253e-05)\n raan : 4.5828e-04 (error: 4.5828e-04)\n aop : 1.2206e-01 (error: 1.2206e-01)\n```\n\nSome conveninence methods for plotting:\n\n```python\nfig1, ax1 = prob.plot_elements_history()\nfig2, ax2 = prob.plot_trajectory_3d()\n```\n\n<p align=\"center\">\n <img src=\"./plots//transfer_eg_3dtraj.png\" width=\"400\" title=\"transfer\">\n</p>\n\n\n## Reporting issues\n\nIf you found a bug in `pyqlaw`, please report it by creating a new issue on [the repository](https://github.com/Yuricst/pyqlaw/). \nPlease make sure to include an example the demonstrates the issue. \n\n## Contributing\n\nIf you have an idea for improving the module, please submid an issue with your proposal for enahncement. \n\n\n## References\n\n[1] Petropoulos, A. E. (2003). Simple Control Laws for Low-Thrust Orbit Transfers. AAS Astrodynamics Specialists Conference.\n\n[2] Petropoulos, A. E. (2004). Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting. AIAA/AAS Astrodynamics Specialist Conference, August. https://doi.org/10.2514/6.2004-5089\n\n[3] Petropoulos, A. E. (2005). Refinements to the Q-law for low-thrust orbit transfers. Advances in the Astronautical Sciences, 120(I), 963\u2013982.\n\n[4] Shannon, J. L., Ozimek, M. T., Atchison, J. A., & Hartzell, C. M. (2020). Q-law aided direct trajectory optimization of many-revolution low-thrust transfers. Journal of Spacecraft and Rockets, 57(4), 672\u2013682. https://doi.org/10.2514/1.A34586\n\n[5] Leomanni, M., Bianchini, G., Garulli, A., Quartullo, R., & Scortecci, F. (2021). Optimal Low-Thrust Orbit Transfers Made Easy: A Direct Approach. Journal of Spacecraft and Rockets, 1\u201311. https://doi.org/10.2514/1.a34949\n\n[6] [Modified Equinoctial Elements (careful with typos in this document!)](https://spsweb.fltops.jpl.nasa.gov/portaldataops/mpg/MPG_Docs/Source%20Docs/EquinoctalElements-modified.pdf)\n\n[7] Hatten, N. (2012). A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws.\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "high-fidelity spaceraft dynamics propagator",
"version": "0.2.0",
"project_urls": {
"Homepage": "https://github.com/Yuricst/pyqlaw"
},
"split_keywords": [
"astrodynamics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "135a3e4698c7addaf6e83ee7d9e82f96bd59758ff2efac2fdbcfec7c6691b09a",
"md5": "1824a1db7a33d75f00e3fde5173c6da0",
"sha256": "f0899e649d56b65de5ad62f877895be7023b8959870d9f53e316e01aa4292a9d"
},
"downloads": -1,
"filename": "pyqlaw-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1824a1db7a33d75f00e3fde5173c6da0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 28118,
"upload_time": "2024-08-28T16:01:59",
"upload_time_iso_8601": "2024-08-28T16:01:59.840976Z",
"url": "https://files.pythonhosted.org/packages/13/5a/3e4698c7addaf6e83ee7d9e82f96bd59758ff2efac2fdbcfec7c6691b09a/pyqlaw-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c843dd8d39c52c0741e310a05ab00234f8006a956c4a62f2aeddb50d49fe7d00",
"md5": "1af0f101ab7ca581542918120121759f",
"sha256": "ea259749be92a5ab42af7293334915a993bacce423bc14bb72c7c56e52afde62"
},
"downloads": -1,
"filename": "pyqlaw-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "1af0f101ab7ca581542918120121759f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 32742,
"upload_time": "2024-08-28T16:02:03",
"upload_time_iso_8601": "2024-08-28T16:02:03.060802Z",
"url": "https://files.pythonhosted.org/packages/c8/43/dd8d39c52c0741e310a05ab00234f8006a956c4a62f2aeddb50d49fe7d00/pyqlaw-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-28 16:02:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Yuricst",
"github_project": "pyqlaw",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pyqlaw"
}