pyqsim


Namepyqsim JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/cykim8811/pyqsim
SummaryHigh-Level Quantum Computing Simulation in Python
upload_time2024-09-07 16:12:34
maintainerNone
docs_urlNone
authorcykim8811
requires_python>=3.6
licenseNone
keywords quantum simulator quantum computing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyqsim: High-Level Quantum Computing Simulation in Python

pyqsim is a Python library designed to simplify quantum computing simulation through high-level abstractions. It aims to make quantum programming more accessible and intuitive, bridging the gap between classical and quantum computing paradigms.

## Features

- **High-Level Abstraction**: Move beyond low-level circuit and qubit manipulations to a more intuitive programming model.
- **Automatic Inverse Operations**: Objects automatically perform inverse operations upon deletion, maintaining quantum state consistency.
- **Familiar Programming Model**: Use quantum data types similarly to classical types like int, making the transition to quantum computing smoother for classical programmers.
- **Eager Execution**: Computations are performed immediately as Python functions are called, allowing for real-time interaction and debugging.
- **Quantum-Classical Hybrid Programming**: Seamlessly mix quantum operations with classical programming constructs.

## Installation

```bash
pip install pyqsim
```

## Quick Start

Here's a simple example implementing Deutsch's algorithm:

```python
import pyqsim
from pyqsim.types import qint
from pyqsim.gates import h, z

def oracle(x): return x & ~x  # Constant function

a = qint(0, size=1)
z(oracle(h(a)))
print("Constant" if int(a) == 0 else "Balanced")
```

## Advanced Usage

Check out the `examples/` directory for more complex quantum algorithms implementations, including Grover's search algorithm.

## Contributing

We welcome contributions! Please contact me through email.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contact

For any queries or support, please open an issue on our GitHub repository or contact me at [cykim@snu.ac.kr](mailto:cykim@snu.ac.kr).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cykim8811/pyqsim",
    "name": "pyqsim",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "quantum, simulator, quantum computing",
    "author": "cykim8811",
    "author_email": "cykim8811@snu.ac.kr",
    "download_url": "https://files.pythonhosted.org/packages/b8/6f/7475044c1a00447b9aaacfffc13d75b2e37c32920bc426b7e0dde0b5f986/pyqsim-0.0.4.tar.gz",
    "platform": null,
    "description": "# pyqsim: High-Level Quantum Computing Simulation in Python\n\npyqsim is a Python library designed to simplify quantum computing simulation through high-level abstractions. It aims to make quantum programming more accessible and intuitive, bridging the gap between classical and quantum computing paradigms.\n\n## Features\n\n- **High-Level Abstraction**: Move beyond low-level circuit and qubit manipulations to a more intuitive programming model.\n- **Automatic Inverse Operations**: Objects automatically perform inverse operations upon deletion, maintaining quantum state consistency.\n- **Familiar Programming Model**: Use quantum data types similarly to classical types like int, making the transition to quantum computing smoother for classical programmers.\n- **Eager Execution**: Computations are performed immediately as Python functions are called, allowing for real-time interaction and debugging.\n- **Quantum-Classical Hybrid Programming**: Seamlessly mix quantum operations with classical programming constructs.\n\n## Installation\n\n```bash\npip install pyqsim\n```\n\n## Quick Start\n\nHere's a simple example implementing Deutsch's algorithm:\n\n```python\nimport pyqsim\nfrom pyqsim.types import qint\nfrom pyqsim.gates import h, z\n\ndef oracle(x): return x & ~x  # Constant function\n\na = qint(0, size=1)\nz(oracle(h(a)))\nprint(\"Constant\" if int(a) == 0 else \"Balanced\")\n```\n\n## Advanced Usage\n\nCheck out the `examples/` directory for more complex quantum algorithms implementations, including Grover's search algorithm.\n\n## Contributing\n\nWe welcome contributions! Please contact me through email.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Contact\n\nFor any queries or support, please open an issue on our GitHub repository or contact me at [cykim@snu.ac.kr](mailto:cykim@snu.ac.kr).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "High-Level Quantum Computing Simulation in Python",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/cykim8811/pyqsim"
    },
    "split_keywords": [
        "quantum",
        " simulator",
        " quantum computing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bbd3fce0de441c997e63a198e2b57c054e37064242f2de4bd335b1defdbf6a0a",
                "md5": "82d21de20c06546da89c2ca71b6fc30e",
                "sha256": "11c8416f6f4ddcb89ad17aabcc60e07ab97a59199c05b6984a9c248dbe566a79"
            },
            "downloads": -1,
            "filename": "pyqsim-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "82d21de20c06546da89c2ca71b6fc30e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 8646,
            "upload_time": "2024-09-07T16:12:32",
            "upload_time_iso_8601": "2024-09-07T16:12:32.678991Z",
            "url": "https://files.pythonhosted.org/packages/bb/d3/fce0de441c997e63a198e2b57c054e37064242f2de4bd335b1defdbf6a0a/pyqsim-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b86f7475044c1a00447b9aaacfffc13d75b2e37c32920bc426b7e0dde0b5f986",
                "md5": "1e36b716f26b782dad56907ca2b74cee",
                "sha256": "9ef03e04eb3267edba628e6ff27466d7ddcdade9644e044235f166948ff599c0"
            },
            "downloads": -1,
            "filename": "pyqsim-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "1e36b716f26b782dad56907ca2b74cee",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 10052,
            "upload_time": "2024-09-07T16:12:34",
            "upload_time_iso_8601": "2024-09-07T16:12:34.502696Z",
            "url": "https://files.pythonhosted.org/packages/b8/6f/7475044c1a00447b9aaacfffc13d75b2e37c32920bc426b7e0dde0b5f986/pyqsim-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-07 16:12:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cykim8811",
    "github_project": "pyqsim",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyqsim"
}
        
Elapsed time: 0.61817s