pyrit


Namepyrit JSON
Version 0.5.2 PyPI version JSON
download
home_pageNone
SummaryThe Python Risk Identification Tool for LLMs (PyRIT) is a library used to assess the robustness of LLMs
upload_time2024-12-03 23:17:00
maintainerNone
docs_urlNone
authordlmgary, amandajean119, microsiska, rdheekonda, rlundeen2, romanlutz, jbolor21, nina-msft, jsong468, eugeniavkim
requires_python<3.13,>=3.10
licenseMIT
keywords llm ai-safety ai-security ai-red-team ai-red-teaming ai-robustness ai-robustness-testing ai-risk-assessment
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Python Risk Identification Tool for generative AI (PyRIT)

The Python Risk Identification Tool for generative AI (PyRIT) is an open source
framework built to empower security professionals and engineers to proactively
identify risks in generative AI systems.

- Check out our [documentation](https://azure.github.io/PyRIT/) for more information
  about how to use, install, or contribute to PyRIT.
- Visit our [Discord server](https://discord.gg/9fMpq3tc8u) to chat with the team and community.

## Trademarks

This project may contain trademarks or logos for projects, products, or services.
Authorized use of Microsoft trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must
not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's
policies.

## Citing PyRIT

If you use PyRIT in your research, please cite our preprint paper as follows:

```
@misc{munoz2024pyritframeworksecurityrisk,
      title={PyRIT: A Framework for Security Risk Identification and Red Teaming in Generative AI Systems},
      author={Gary D. Lopez Munoz and Amanda J. Minnich and Roman Lutz and Richard Lundeen and Raja Sekhar Rao Dheekonda and Nina Chikanov and Bolor-Erdene Jagdagdorj and Martin Pouliot and Shiven Chawla and Whitney Maxwell and Blake Bullwinkel and Katherine Pratt and Joris de Gruyter and Charlotte Siska and Pete Bryan and Tori Westerhoff and Chang Kawaguchi and Christian Seifert and Ram Shankar Siva Kumar and Yonatan Zunger},
      year={2024},
      eprint={2410.02828},
      archivePrefix={arXiv},
      primaryClass={cs.CR},
      url={https://arxiv.org/abs/2410.02828},
}
```

Additionally, please cite the tool itself following the `CITATION.cff` file in the root of this repository.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyrit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "llm, ai-safety, ai-security, ai-red-team, ai-red-teaming, ai-robustness, ai-robustness-testing, ai-risk-assessment",
    "author": "dlmgary, amandajean119, microsiska, rdheekonda, rlundeen2, romanlutz, jbolor21, nina-msft, jsong468, eugeniavkim",
    "author_email": "Microsoft AI Red Team <airedteam@microsoft.com>",
    "download_url": "https://files.pythonhosted.org/packages/68/c7/8b1974d395a484fabf86cb50aa0573d233c6d99428e6ce0bfa45512281fe/pyrit-0.5.2.tar.gz",
    "platform": null,
    "description": "# Python Risk Identification Tool for generative AI (PyRIT)\r\n\r\nThe Python Risk Identification Tool for generative AI (PyRIT) is an open source\r\nframework built to empower security professionals and engineers to proactively\r\nidentify risks in generative AI systems.\r\n\r\n- Check out our [documentation](https://azure.github.io/PyRIT/) for more information\r\n  about how to use, install, or contribute to PyRIT.\r\n- Visit our [Discord server](https://discord.gg/9fMpq3tc8u) to chat with the team and community.\r\n\r\n## Trademarks\r\n\r\nThis project may contain trademarks or logos for projects, products, or services.\r\nAuthorized use of Microsoft trademarks or logos is subject to and must follow\r\n[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).\r\nUse of Microsoft trademarks or logos in modified versions of this project must\r\nnot cause confusion or imply Microsoft sponsorship.\r\nAny use of third-party trademarks or logos are subject to those third-party's\r\npolicies.\r\n\r\n## Citing PyRIT\r\n\r\nIf you use PyRIT in your research, please cite our preprint paper as follows:\r\n\r\n```\r\n@misc{munoz2024pyritframeworksecurityrisk,\r\n      title={PyRIT: A Framework for Security Risk Identification and Red Teaming in Generative AI Systems},\r\n      author={Gary D. Lopez Munoz and Amanda J. Minnich and Roman Lutz and Richard Lundeen and Raja Sekhar Rao Dheekonda and Nina Chikanov and Bolor-Erdene Jagdagdorj and Martin Pouliot and Shiven Chawla and Whitney Maxwell and Blake Bullwinkel and Katherine Pratt and Joris de Gruyter and Charlotte Siska and Pete Bryan and Tori Westerhoff and Chang Kawaguchi and Christian Seifert and Ram Shankar Siva Kumar and Yonatan Zunger},\r\n      year={2024},\r\n      eprint={2410.02828},\r\n      archivePrefix={arXiv},\r\n      primaryClass={cs.CR},\r\n      url={https://arxiv.org/abs/2410.02828},\r\n}\r\n```\r\n\r\nAdditionally, please cite the tool itself following the `CITATION.cff` file in the root of this repository.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The Python Risk Identification Tool for LLMs (PyRIT) is a library used to assess the robustness of LLMs",
    "version": "0.5.2",
    "project_urls": null,
    "split_keywords": [
        "llm",
        " ai-safety",
        " ai-security",
        " ai-red-team",
        " ai-red-teaming",
        " ai-robustness",
        " ai-robustness-testing",
        " ai-risk-assessment"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ca7869bce5ea4acd95cd7c7a137aa07e89938d63d7e3f7593abb121d754e1fe",
                "md5": "fdbb1b6cf1d93808316311375cfc4d0a",
                "sha256": "a802d32baac87097fc3a46dc765e7dbf1087ebe3ff2199d6a58da6d685070556"
            },
            "downloads": -1,
            "filename": "pyrit-0.5.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fdbb1b6cf1d93808316311375cfc4d0a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.10",
            "size": 505138,
            "upload_time": "2024-12-03T23:16:58",
            "upload_time_iso_8601": "2024-12-03T23:16:58.564463Z",
            "url": "https://files.pythonhosted.org/packages/7c/a7/869bce5ea4acd95cd7c7a137aa07e89938d63d7e3f7593abb121d754e1fe/pyrit-0.5.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "68c78b1974d395a484fabf86cb50aa0573d233c6d99428e6ce0bfa45512281fe",
                "md5": "272e25d8aff171723d6f4463b6714140",
                "sha256": "e53ed44cffa480643fec656edb0f14780ee5fa059c0a450d1981603b62bf67f9"
            },
            "downloads": -1,
            "filename": "pyrit-0.5.2.tar.gz",
            "has_sig": false,
            "md5_digest": "272e25d8aff171723d6f4463b6714140",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.10",
            "size": 326692,
            "upload_time": "2024-12-03T23:17:00",
            "upload_time_iso_8601": "2024-12-03T23:17:00.189618Z",
            "url": "https://files.pythonhosted.org/packages/68/c7/8b1974d395a484fabf86cb50aa0573d233c6d99428e6ce0bfa45512281fe/pyrit-0.5.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-03 23:17:00",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pyrit"
}
        
Elapsed time: 0.47889s