pysamoo


Namepysamoo JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://anyoptimization.com/projects/pysamoo/
SummarySurrogate-Assisted Multi-objective Optimization
upload_time2023-11-26 02:57:54
maintainer
docs_urlNone
authorJulian Blank
requires_python>=3.7
licenseGNU AFFERO GENERAL PUBLIC LICENSE (AGPL)
keywords surrogate metamodel bayesian optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pysamoo - Surrogate-Assisted Multi-objective Optimization
====================================================================


|python| |license|


.. |python| image:: https://img.shields.io/badge/python-3.6-blue.svg
   :alt: python 3.6

.. |license| image:: https://img.shields.io/badge/license-apache-orange.svg
   :alt: license apache
   :target: https://www.apache.org/licenses/LICENSE-2.0

The software documentation is available here: https://anyoptimization.com/projects/pysamoo/

Installation
====================================================================

The official release is always available at PyPi:

.. code:: bash

    pip install -U pysamoo



.. _Usage:

Usage
********************************************************************************

We refer here to our documentation for all the details.
However, for instance, executing NSGA2:

.. code:: python

    from pymoo.optimize import minimize
    from pymoo.problems.multi.zdt import ZDT1
    from pymoo.visualization.scatter import Scatter
    from pysamoo.algorithms.ssansga2 import SSANSGA2

    problem = ZDT1(n_var=10)

    algorithm = SSANSGA2(n_initial_doe=50,
                         n_infills=10,
                         surr_pop_size=100,
                         surr_n_gen=50)

    res = minimize(
        problem,
        algorithm,
        ('n_evals', 200),
        seed=1,
        verbose=True)

    plot = Scatter()
    plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
    plot.add(res.F, facecolor="none", edgecolor="red")
    plot.show()



.. _Citation:

Citation
********************************************************************************

If you use this framework, we kindly ask you to cite the following paper:

| `Julian Blank, & Kalyanmoy Deb. (2022). pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python. <https://arxiv.org/abs/2204.05855>`_
|
| BibTex:

::

    @misc{pysamoo,
      title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},
      author={Julian Blank and Kalyanmoy Deb},
      year={2022},
      eprint={2204.05855},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
    }

.. _Contact:

Contact
********************************************************************************

Feel free to contact me if you have any questions:

| `Julian Blank <http://julianblank.com>`_  (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA


            

Raw data

            {
    "_id": null,
    "home_page": "https://anyoptimization.com/projects/pysamoo/",
    "name": "pysamoo",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "surrogate,metamodel,bayesian optimization",
    "author": "Julian Blank",
    "author_email": "blankjul@msu.edu",
    "download_url": "https://files.pythonhosted.org/packages/c5/d1/6d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828/pysamoo-0.1.2.tar.gz",
    "platform": "any",
    "description": "pysamoo - Surrogate-Assisted Multi-objective Optimization\n====================================================================\n\n\n|python| |license|\n\n\n.. |python| image:: https://img.shields.io/badge/python-3.6-blue.svg\n   :alt: python 3.6\n\n.. |license| image:: https://img.shields.io/badge/license-apache-orange.svg\n   :alt: license apache\n   :target: https://www.apache.org/licenses/LICENSE-2.0\n\nThe software documentation is available here: https://anyoptimization.com/projects/pysamoo/\n\nInstallation\n====================================================================\n\nThe official release is always available at PyPi:\n\n.. code:: bash\n\n    pip install -U pysamoo\n\n\n\n.. _Usage:\n\nUsage\n********************************************************************************\n\nWe refer here to our documentation for all the details.\nHowever, for instance, executing NSGA2:\n\n.. code:: python\n\n    from pymoo.optimize import minimize\n    from pymoo.problems.multi.zdt import ZDT1\n    from pymoo.visualization.scatter import Scatter\n    from pysamoo.algorithms.ssansga2 import SSANSGA2\n\n    problem = ZDT1(n_var=10)\n\n    algorithm = SSANSGA2(n_initial_doe=50,\n                         n_infills=10,\n                         surr_pop_size=100,\n                         surr_n_gen=50)\n\n    res = minimize(\n        problem,\n        algorithm,\n        ('n_evals', 200),\n        seed=1,\n        verbose=True)\n\n    plot = Scatter()\n    plot.add(problem.pareto_front(), plot_type=\"line\", color=\"black\", alpha=0.7)\n    plot.add(res.F, facecolor=\"none\", edgecolor=\"red\")\n    plot.show()\n\n\n\n.. _Citation:\n\nCitation\n********************************************************************************\n\nIf you use this framework, we kindly ask you to cite the following paper:\n\n| `Julian Blank, & Kalyanmoy Deb. (2022). pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python. <https://arxiv.org/abs/2204.05855>`_\n|\n| BibTex:\n\n::\n\n    @misc{pysamoo,\n      title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},\n      author={Julian Blank and Kalyanmoy Deb},\n      year={2022},\n      eprint={2204.05855},\n      archivePrefix={arXiv},\n      primaryClass={cs.NE}\n    }\n\n.. _Contact:\n\nContact\n********************************************************************************\n\nFeel free to contact me if you have any questions:\n\n| `Julian Blank <http://julianblank.com>`_  (blankjul [at] msu.edu)\n| Michigan State University\n| Computational Optimization and Innovation Laboratory (COIN)\n| East Lansing, MI 48824, USA\n\n",
    "bugtrack_url": null,
    "license": "GNU AFFERO GENERAL PUBLIC LICENSE (AGPL)",
    "summary": "Surrogate-Assisted Multi-objective Optimization",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://anyoptimization.com/projects/pysamoo/"
    },
    "split_keywords": [
        "surrogate",
        "metamodel",
        "bayesian optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c5d16d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828",
                "md5": "a106f337d08bff63fd058239400df28b",
                "sha256": "5179d3300efa9c667e2884e99c33573a5299d332e8542d97fb599e269f182a5e"
            },
            "downloads": -1,
            "filename": "pysamoo-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a106f337d08bff63fd058239400df28b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 41484,
            "upload_time": "2023-11-26T02:57:54",
            "upload_time_iso_8601": "2023-11-26T02:57:54.255190Z",
            "url": "https://files.pythonhosted.org/packages/c5/d1/6d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828/pysamoo-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-26 02:57:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pysamoo"
}
        
Elapsed time: 0.15614s