pysamoo - Surrogate-Assisted Multi-objective Optimization
====================================================================
|python| |license|
.. |python| image:: https://img.shields.io/badge/python-3.6-blue.svg
:alt: python 3.6
.. |license| image:: https://img.shields.io/badge/license-apache-orange.svg
:alt: license apache
:target: https://www.apache.org/licenses/LICENSE-2.0
The software documentation is available here: https://anyoptimization.com/projects/pysamoo/
Installation
====================================================================
The official release is always available at PyPi:
.. code:: bash
pip install -U pysamoo
.. _Usage:
Usage
********************************************************************************
We refer here to our documentation for all the details.
However, for instance, executing NSGA2:
.. code:: python
from pymoo.optimize import minimize
from pymoo.problems.multi.zdt import ZDT1
from pymoo.visualization.scatter import Scatter
from pysamoo.algorithms.ssansga2 import SSANSGA2
problem = ZDT1(n_var=10)
algorithm = SSANSGA2(n_initial_doe=50,
n_infills=10,
surr_pop_size=100,
surr_n_gen=50)
res = minimize(
problem,
algorithm,
('n_evals', 200),
seed=1,
verbose=True)
plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, facecolor="none", edgecolor="red")
plot.show()
.. _Citation:
Citation
********************************************************************************
If you use this framework, we kindly ask you to cite the following paper:
| `Julian Blank, & Kalyanmoy Deb. (2022). pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python. <https://arxiv.org/abs/2204.05855>`_
|
| BibTex:
::
@misc{pysamoo,
title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},
author={Julian Blank and Kalyanmoy Deb},
year={2022},
eprint={2204.05855},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
.. _Contact:
Contact
********************************************************************************
Feel free to contact me if you have any questions:
| `Julian Blank <http://julianblank.com>`_ (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA
Raw data
{
"_id": null,
"home_page": "https://anyoptimization.com/projects/pysamoo/",
"name": "pysamoo",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "surrogate,metamodel,bayesian optimization",
"author": "Julian Blank",
"author_email": "blankjul@msu.edu",
"download_url": "https://files.pythonhosted.org/packages/c5/d1/6d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828/pysamoo-0.1.2.tar.gz",
"platform": "any",
"description": "pysamoo - Surrogate-Assisted Multi-objective Optimization\n====================================================================\n\n\n|python| |license|\n\n\n.. |python| image:: https://img.shields.io/badge/python-3.6-blue.svg\n :alt: python 3.6\n\n.. |license| image:: https://img.shields.io/badge/license-apache-orange.svg\n :alt: license apache\n :target: https://www.apache.org/licenses/LICENSE-2.0\n\nThe software documentation is available here: https://anyoptimization.com/projects/pysamoo/\n\nInstallation\n====================================================================\n\nThe official release is always available at PyPi:\n\n.. code:: bash\n\n pip install -U pysamoo\n\n\n\n.. _Usage:\n\nUsage\n********************************************************************************\n\nWe refer here to our documentation for all the details.\nHowever, for instance, executing NSGA2:\n\n.. code:: python\n\n from pymoo.optimize import minimize\n from pymoo.problems.multi.zdt import ZDT1\n from pymoo.visualization.scatter import Scatter\n from pysamoo.algorithms.ssansga2 import SSANSGA2\n\n problem = ZDT1(n_var=10)\n\n algorithm = SSANSGA2(n_initial_doe=50,\n n_infills=10,\n surr_pop_size=100,\n surr_n_gen=50)\n\n res = minimize(\n problem,\n algorithm,\n ('n_evals', 200),\n seed=1,\n verbose=True)\n\n plot = Scatter()\n plot.add(problem.pareto_front(), plot_type=\"line\", color=\"black\", alpha=0.7)\n plot.add(res.F, facecolor=\"none\", edgecolor=\"red\")\n plot.show()\n\n\n\n.. _Citation:\n\nCitation\n********************************************************************************\n\nIf you use this framework, we kindly ask you to cite the following paper:\n\n| `Julian Blank, & Kalyanmoy Deb. (2022). pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python. <https://arxiv.org/abs/2204.05855>`_\n|\n| BibTex:\n\n::\n\n @misc{pysamoo,\n title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},\n author={Julian Blank and Kalyanmoy Deb},\n year={2022},\n eprint={2204.05855},\n archivePrefix={arXiv},\n primaryClass={cs.NE}\n }\n\n.. _Contact:\n\nContact\n********************************************************************************\n\nFeel free to contact me if you have any questions:\n\n| `Julian Blank <http://julianblank.com>`_ (blankjul [at] msu.edu)\n| Michigan State University\n| Computational Optimization and Innovation Laboratory (COIN)\n| East Lansing, MI 48824, USA\n\n",
"bugtrack_url": null,
"license": "GNU AFFERO GENERAL PUBLIC LICENSE (AGPL)",
"summary": "Surrogate-Assisted Multi-objective Optimization",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://anyoptimization.com/projects/pysamoo/"
},
"split_keywords": [
"surrogate",
"metamodel",
"bayesian optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c5d16d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828",
"md5": "a106f337d08bff63fd058239400df28b",
"sha256": "5179d3300efa9c667e2884e99c33573a5299d332e8542d97fb599e269f182a5e"
},
"downloads": -1,
"filename": "pysamoo-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "a106f337d08bff63fd058239400df28b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 41484,
"upload_time": "2023-11-26T02:57:54",
"upload_time_iso_8601": "2023-11-26T02:57:54.255190Z",
"url": "https://files.pythonhosted.org/packages/c5/d1/6d5db4dbc134f65c57e4929ac14e35a99d02e4b8c11e7fdacd4b3bdd6828/pysamoo-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-26 02:57:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pysamoo"
}