pyscissor


Namepyscissor JSON
Version 1.1.7 PyPI version JSON
download
home_pagehttps://github.com/nzahasan/pyscissor
SummaryA python module for obtaining reduced(min,max,avg) value from netCDF file under a polygon region
upload_time2023-07-15 13:52:59
maintainer
docs_urlNone
authornzahasan
requires_python>=3.6
licenseMIT
keywords netcdf crop shapefile
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyscissor
![Supported Version](https://img.shields.io/badge/python-3.6|3.7|3.8-blue.svg) 
![Action: Build](https://github.com/nzahasan/pyscissor/workflows/build/badge.svg)
![publish](https://github.com/nzahasan/pyscissor/workflows/publish/badge.svg)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)  
A Python3 module for extracting data from netcdf file under a shapefile region.  

<img src="data/sample.png" height="500" align="center">


### Installation

pyscissor can be installed using the following commands

```bash
$ git clone https://github.com/nzahasan/pyscissor.git
$ cd pyscissor
$ python3 setup.py install
```
or using pip

```bash
$ pip install pyscissor
```

### Using pyscissor

```python
import fiona
import numpy as np
from netCDF4 import Dataset
from shapely.geometry import shape
from pyscissor import scissor 


# read shapefile
sf = fiona.open('data/shape.geojson')
shapely_shp =shape(sf.get(0)['geometry'])


# read netcdf
nf = Dataset('data/sample_2.nc','r')
lats = nf.variables['lat'][:]
lons = nf.variables['lon'][:]

# create scissor object 
pys = scissor(shapely_shp,lats,lons)

weight_grid = pys.get_masked_weight() #=> returns a masked array containing weights

# get weighted average
avg = np.average(var,weights=weight_grid)

# if only intersection mask with shape is needed use `weight_grid.mask`
```
A detailed use case can be found in the following jupyter notebooks 
- <a href="notebooks/example_01.ipynb">example_01.ipynb</a>
- <a href="notebooks/example_02.ipynb">example_02.ipynb</a>
- <a href="notebooks/example_03.ipynb">example_03.ipynb</a>
- <a href="notebooks/example_04.ipynb">example_04.ipynb</a>



### Using nc2ts_by_shp.py
this package contains a `nc2ts_by_shp.py` script. A command line tool that can be used to quickly extract 
reduced(min/max/average/weighted average) time-series form netcdf file with shapefile

```bash
# with 3d array [data/sample_2.nc] generel case
$ nc2ts_by_shp.py -nc=sample_2.nc -nci='Y=lat;X=lon;T=time;V=tmin;' -s=shape_esri.zip \
		-sp='ADM2_EN;ADM3_EN' -r=avg -o=test2.csv

# with 4d array [data/sample_1.nc]
$ nc2ts_by_shp.py -nc=sample_1.nc -nci='Y=lat;X=lon;T=time;V=temperature;slicer=[:,0,:,:]' -sf=shape_esri.zip \
		-sfp='ADM2_EN;ADM3_EN' -r=wavg -o=test1.csv

```
Options:

	-nc  = netcdf file

	-nci = netcdf variable and dimension information
			available options:
			X = x dimension variable name,
			Y = y dimension variable name,
			T = time dimension variable name,
			V = variable name,
			slicer = slicing index for obtaining 3d array [optional]
					
			note: `slicer` is required if variable has more than three dimension

	-sf  = shape file ( can be zipped shapefile, shapefile or geojson )

	-sfp = shapefile properties
			only required when shapefile contains multiple records

	-r   = reducer, default is average
			Available options: min,max,avg,wavg

	-o   = output file name


### Causes of Erroneous output

	- when shapefile and netcdf file have different projection
	- shapefile dosen't fully reside within netcdf bounds 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nzahasan/pyscissor",
    "name": "pyscissor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "netcdf,crop,shapefile",
    "author": "nzahasan",
    "author_email": "nzahasan@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/54/13/3f339b50256e1265971655ed2113a5b9da4876425ed88c09f802bd4d55af/pyscissor-1.1.7.tar.gz",
    "platform": null,
    "description": "# pyscissor\n![Supported Version](https://img.shields.io/badge/python-3.6|3.7|3.8-blue.svg) \n![Action: Build](https://github.com/nzahasan/pyscissor/workflows/build/badge.svg)\n![publish](https://github.com/nzahasan/pyscissor/workflows/publish/badge.svg)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)  \nA Python3 module for extracting data from netcdf file under a shapefile region.  \n\n<img src=\"data/sample.png\" height=\"500\" align=\"center\">\n\n\n### Installation\n\npyscissor can be installed using the following commands\n\n```bash\n$ git clone https://github.com/nzahasan/pyscissor.git\n$ cd pyscissor\n$ python3 setup.py install\n```\nor using pip\n\n```bash\n$ pip install pyscissor\n```\n\n### Using pyscissor\n\n```python\nimport fiona\nimport numpy as np\nfrom netCDF4 import Dataset\nfrom shapely.geometry import shape\nfrom pyscissor import scissor \n\n\n# read shapefile\nsf = fiona.open('data/shape.geojson')\nshapely_shp =shape(sf.get(0)['geometry'])\n\n\n# read netcdf\nnf = Dataset('data/sample_2.nc','r')\nlats = nf.variables['lat'][:]\nlons = nf.variables['lon'][:]\n\n# create scissor object \npys = scissor(shapely_shp,lats,lons)\n\nweight_grid = pys.get_masked_weight() #=> returns a masked array containing weights\n\n# get weighted average\navg = np.average(var,weights=weight_grid)\n\n# if only intersection mask with shape is needed use `weight_grid.mask`\n```\nA detailed use case can be found in the following jupyter notebooks \n- <a href=\"notebooks/example_01.ipynb\">example_01.ipynb</a>\n- <a href=\"notebooks/example_02.ipynb\">example_02.ipynb</a>\n- <a href=\"notebooks/example_03.ipynb\">example_03.ipynb</a>\n- <a href=\"notebooks/example_04.ipynb\">example_04.ipynb</a>\n\n\n\n### Using nc2ts_by_shp.py\nthis package contains a `nc2ts_by_shp.py` script. A command line tool that can be used to quickly extract \nreduced(min/max/average/weighted average) time-series form netcdf file with shapefile\n\n```bash\n# with 3d array [data/sample_2.nc] generel case\n$ nc2ts_by_shp.py -nc=sample_2.nc -nci='Y=lat;X=lon;T=time;V=tmin;' -s=shape_esri.zip \\\n\t\t-sp='ADM2_EN;ADM3_EN' -r=avg -o=test2.csv\n\n# with 4d array [data/sample_1.nc]\n$ nc2ts_by_shp.py -nc=sample_1.nc -nci='Y=lat;X=lon;T=time;V=temperature;slicer=[:,0,:,:]' -sf=shape_esri.zip \\\n\t\t-sfp='ADM2_EN;ADM3_EN' -r=wavg -o=test1.csv\n\n```\nOptions:\n\n\t-nc  = netcdf file\n\n\t-nci = netcdf variable and dimension information\n\t\t\tavailable options:\n\t\t\tX = x dimension variable name,\n\t\t\tY = y dimension variable name,\n\t\t\tT = time dimension variable name,\n\t\t\tV = variable name,\n\t\t\tslicer = slicing index for obtaining 3d array [optional]\n\t\t\t\t\t\n\t\t\tnote: `slicer` is required if variable has more than three dimension\n\n\t-sf  = shape file ( can be zipped shapefile, shapefile or geojson )\n\n\t-sfp = shapefile properties\n\t\t\tonly required when shapefile contains multiple records\n\n\t-r   = reducer, default is average\n\t\t\tAvailable options: min,max,avg,wavg\n\n\t-o   = output file name\n\n\n### Causes of Erroneous output\n\n\t- when shapefile and netcdf file have different projection\n\t- shapefile dosen't fully reside within netcdf bounds \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A python module for obtaining reduced(min,max,avg) value from netCDF file under a polygon region",
    "version": "1.1.7",
    "project_urls": {
        "Homepage": "https://github.com/nzahasan/pyscissor"
    },
    "split_keywords": [
        "netcdf",
        "crop",
        "shapefile"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e3eb750f13e2722f7c44281713f96d2d52732ad81b07b2b7a962caff590a31d",
                "md5": "9412140cc0228de18b2f800330955a76",
                "sha256": "6211f803859cefd01a6261e854299349dcac43d7310e44c81d69dbf67b4b6439"
            },
            "downloads": -1,
            "filename": "pyscissor-1.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9412140cc0228de18b2f800330955a76",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 12444,
            "upload_time": "2023-07-15T13:52:58",
            "upload_time_iso_8601": "2023-07-15T13:52:58.538469Z",
            "url": "https://files.pythonhosted.org/packages/5e/3e/b750f13e2722f7c44281713f96d2d52732ad81b07b2b7a962caff590a31d/pyscissor-1.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "54133f339b50256e1265971655ed2113a5b9da4876425ed88c09f802bd4d55af",
                "md5": "951c7b26cfc934b08fceef697a83a7dc",
                "sha256": "5c197ff61dfc97b237219f28114d57244ade5d2d54614df64662520b4caa2676"
            },
            "downloads": -1,
            "filename": "pyscissor-1.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "951c7b26cfc934b08fceef697a83a7dc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 9999,
            "upload_time": "2023-07-15T13:52:59",
            "upload_time_iso_8601": "2023-07-15T13:52:59.992366Z",
            "url": "https://files.pythonhosted.org/packages/54/13/3f339b50256e1265971655ed2113a5b9da4876425ed88c09f802bd4d55af/pyscissor-1.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-15 13:52:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nzahasan",
    "github_project": "pyscissor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pyscissor"
}
        
Elapsed time: 0.63741s