pysfa


Namepysfa JSON
Version 0.8 PyPI version JSON
download
home_pagehttps://github.com/gEAPA/pySFA
SummaryA Python Package for Stochastic Frontier Analysis
upload_time2023-05-14 17:37:08
maintainer
docs_urlNone
authorSheng Dai, Zhiqiang Liao
requires_python
licenseMIT
keywords sfa mle te
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Stochastic Frontier Analysis (SFA)

## Installation

The [`pySFA`](https://pypi.org/project/pysfa/) package is now avaiable on PyPI and the latest development version can be installed from the Github repository [`pySFA`](https://github.com/gEAPA/pySFA). Please feel free to download and test it. We welcome any bug reports and feedback.

#### PyPI [![PyPI version](https://img.shields.io/pypi/v/pysfa.svg?maxAge=3600)](https://pypi.org/project/pysfa/)[![PyPI downloads](https://img.shields.io/pypi/dm/pysfa.svg?maxAge=21600)](https://pypistats.org/packages/pysfa)

    pip install pysfa

#### GitHub

    pip install -U git+https://github.com/gEAPA/pySFA

## Authors

- [Sheng Dai](https://daisheng.io), PhD, Turku School of Economics, University of Turku, Finland.
- [Zhiqiang Liao](https://liaozhiqiang.com), Doctoral Researcher, Aalto University School of Business, Finland.

## Demo: Estimating a production function by `pySFA`

```python
import numpy as np
import pandas as pd
from pysfa import SFA
from pysfa.dataset import load_Tim_Coelli_frontier


# import the data from Tim Coelli Frontier 4.1
df = load_Tim_Coelli_frontier(x_select=['labour', 'capital'],
                              y_select=['output'])
y = np.log(df.y)
x = np.log(df.x)

# Estimate SFA model
res = SFA.SFA(y, x, fun=SFA.FUN_PROD, method=SFA.TE_teJ)
res.optimize()
# print estimates
print(res.get_beta())
print(res.get_residuals())

# print estimated parameters
print(res.get_lambda())
print(res.get_sigma2())
print(res.get_sigmau2())
print(res.get_sigmav2())

# print statistics
print(res.get_pvalue())
print(res.get_tvalue())
print(res.get_std_err())

# OR print summary
print(res.summary())

# print TE
print(res.get_technical_efficiency())
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gEAPA/pySFA",
    "name": "pysfa",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "SFA,MLE,TE",
    "author": "Sheng Dai, Zhiqiang Liao",
    "author_email": "sheng.dai@utu.fi",
    "download_url": "https://files.pythonhosted.org/packages/77/a3/0bae4b30b7b5b216bc3c3e1088146f69b8efab261e452480674bf1417c51/pysfa-0.8.tar.gz",
    "platform": null,
    "description": "# Stochastic Frontier Analysis (SFA)\n\n## Installation\n\nThe [`pySFA`](https://pypi.org/project/pysfa/) package is now avaiable on PyPI and the latest development version can be installed from the Github repository [`pySFA`](https://github.com/gEAPA/pySFA). Please feel free to download and test it. We welcome any bug reports and feedback.\n\n#### PyPI [![PyPI version](https://img.shields.io/pypi/v/pysfa.svg?maxAge=3600)](https://pypi.org/project/pysfa/)[![PyPI downloads](https://img.shields.io/pypi/dm/pysfa.svg?maxAge=21600)](https://pypistats.org/packages/pysfa)\n\n    pip install pysfa\n\n#### GitHub\n\n    pip install -U git+https://github.com/gEAPA/pySFA\n\n## Authors\n\n- [Sheng Dai](https://daisheng.io), PhD, Turku School of Economics, University of Turku, Finland.\n- [Zhiqiang Liao](https://liaozhiqiang.com), Doctoral Researcher, Aalto University School of Business, Finland.\n\n## Demo: Estimating a production function by `pySFA`\n\n```python\nimport numpy as np\nimport pandas as pd\nfrom pysfa import SFA\nfrom pysfa.dataset import load_Tim_Coelli_frontier\n\n\n# import the data from Tim Coelli Frontier 4.1\ndf = load_Tim_Coelli_frontier(x_select=['labour', 'capital'],\n                              y_select=['output'])\ny = np.log(df.y)\nx = np.log(df.x)\n\n# Estimate SFA model\nres = SFA.SFA(y, x, fun=SFA.FUN_PROD, method=SFA.TE_teJ)\nres.optimize()\n# print estimates\nprint(res.get_beta())\nprint(res.get_residuals())\n\n# print estimated parameters\nprint(res.get_lambda())\nprint(res.get_sigma2())\nprint(res.get_sigmau2())\nprint(res.get_sigmav2())\n\n# print statistics\nprint(res.get_pvalue())\nprint(res.get_tvalue())\nprint(res.get_std_err())\n\n# OR print summary\nprint(res.summary())\n\n# print TE\nprint(res.get_technical_efficiency())\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python Package for Stochastic Frontier Analysis",
    "version": "0.8",
    "project_urls": {
        "Download": "https://pypi.org/project/pysfa/",
        "Homepage": "https://github.com/gEAPA/pySFA"
    },
    "split_keywords": [
        "sfa",
        "mle",
        "te"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f8f0b200061d4502344efb9a058935045b3af87a2ec95189618ebf514a59ebc",
                "md5": "febc0c6d9e6b1fb2f1b8065f9fd25160",
                "sha256": "c1465042bb6cdee06d1dbd77789239f4f929cf86917dae1cdf7a47979e8460e5"
            },
            "downloads": -1,
            "filename": "pysfa-0.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "febc0c6d9e6b1fb2f1b8065f9fd25160",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9797,
            "upload_time": "2023-05-14T17:37:06",
            "upload_time_iso_8601": "2023-05-14T17:37:06.821195Z",
            "url": "https://files.pythonhosted.org/packages/3f/8f/0b200061d4502344efb9a058935045b3af87a2ec95189618ebf514a59ebc/pysfa-0.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "77a30bae4b30b7b5b216bc3c3e1088146f69b8efab261e452480674bf1417c51",
                "md5": "51dfada59f8a23c9b2c5339ca02c7a08",
                "sha256": "2bef85a409513695463e95c83a7477b77ee8ed95bddcc123e1332c4966d914c4"
            },
            "downloads": -1,
            "filename": "pysfa-0.8.tar.gz",
            "has_sig": false,
            "md5_digest": "51dfada59f8a23c9b2c5339ca02c7a08",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 9914,
            "upload_time": "2023-05-14T17:37:08",
            "upload_time_iso_8601": "2023-05-14T17:37:08.475854Z",
            "url": "https://files.pythonhosted.org/packages/77/a3/0bae4b30b7b5b216bc3c3e1088146f69b8efab261e452480674bf1417c51/pysfa-0.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-14 17:37:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gEAPA",
    "github_project": "pySFA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pysfa"
}
        
Elapsed time: 0.10401s